Vector Functions

SubModule Containing Vector and Scalar Function Types and Functions

class asset.VectorFunctions.Arguments

Bases: pybind11_object

Constant(*args, **kwargs)

Overloaded function.

  1. Constant(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. Constant(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.ScalarFunction

IRows(self: asset.VectorFunctions.Arguments) int
ORows(self: asset.VectorFunctions.Arguments) int
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __add__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

__array_ufunc__ = None
__call__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.Arguments, arg0: int) -> asset.VectorFunctions.Element

  2. __getitem__(self: asset.VectorFunctions.Arguments, arg0: slice) -> asset.VectorFunctions.Segment

__init__(self: asset.VectorFunctions.Arguments, arg0: int) None
__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __mul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__neg__(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
__radd__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __rmul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __rmul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__rsub__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __sub__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  4. __truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

adjointgradient(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

coeff(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Element
compute(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cross(*args, **kwargs)

Overloaded function.

  1. cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cross(self: asset.VectorFunctions.Arguments, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction

  3. cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  4. cross(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  5. cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

cubed_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

  4. cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

  4. cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  3. dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.ScalarFunction

  4. dot(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction

head(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Segment
head2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1>
head3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1>
head_2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1>
head_3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1>
input_domain(self: asset.VectorFunctions.Arguments) numpy.ndarray[numpy.int32[2, n]]
inverse_cubed_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
inverse_four_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
inverse_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
inverse_squared_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
is_linear(self: asset.VectorFunctions.Arguments) bool
jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.Arguments) str
norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
normalized(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
normalized_power2(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. normalized_power3(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction

  3. normalized_power3(self: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction

normalized_power4(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
normalized_power5(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
padded(self: asset.VectorFunctions.Arguments, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.VectorFunction
rpt(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.Arguments, arg0: int, arg1: int) asset.VectorFunctions.Segment
segment2(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 2, -1>
segment3(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 3, -1>
segment_2(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 2, -1>
segment_3(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 3, -1>
squared_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
sum(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Segment
tail2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1>
tail3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1>
tail_2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1>
tail_3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1>
tolist(*args, **kwargs)

Overloaded function.

  1. tolist(self: asset.VectorFunctions.Arguments) -> list[asset.VectorFunctions.Element]

  2. tolist(self: asset.VectorFunctions.Arguments, arg0: list[int]) -> list[asset.VectorFunctions.Element]

  3. tolist(self: asset.VectorFunctions.Arguments, arg0: list[tuple[int, int]]) -> list[object]

vf(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.ColMatrix

Bases: pybind11_object

__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.ColMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) -> asset.VectorFunctions.ColMatrix

  2. __add__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix

__array_ufunc__ = None
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int) -> None

  2. __init__(self: asset.VectorFunctions.ColMatrix, arg0: list[asset.VectorFunctions.VectorFunction]) -> None

__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix

  2. __mul__(self: asset.VectorFunctions.ColMatrix, arg0: ASSET::MatrixFunctionView<ASSET::GenericFunction<-1, -1>, -1, -1, 1>) -> asset.VectorFunctions.ColMatrix

  3. __mul__(self: asset.VectorFunctions.ColMatrix, arg0: float) -> asset.VectorFunctions.ColMatrix

  4. __mul__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__radd__(self: asset.VectorFunctions.ColMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) asset.VectorFunctions.ColMatrix
__rmul__(self: asset.VectorFunctions.ColMatrix, arg0: float) asset.VectorFunctions.ColMatrix
inverse(self: asset.VectorFunctions.ColMatrix) asset.VectorFunctions.ColMatrix
transpose(self: asset.VectorFunctions.ColMatrix) ASSET::MatrixFunctionView<ASSET::GenericFunction<-1, -1>, -1, -1, 1>
vf(self: asset.VectorFunctions.ColMatrix) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.Comparative

Bases: pybind11_object

__init__(*args, **kwargs)
__module__ = 'asset.VectorFunctions'
compute(self: asset.VectorFunctions.Comparative, arg0: numpy.ndarray[numpy.float64[m, 1]]) bool
max(*args, **kwargs)

Overloaded function.

  1. max(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. max(self: float, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. max(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  4. max(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  5. max(self: numpy.ndarray[numpy.float64[m, 1]], arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  6. max(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

min(*args, **kwargs)

Overloaded function.

  1. min(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. min(self: float, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. min(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  4. min(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  5. min(self: numpy.ndarray[numpy.float64[m, 1]], arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  6. min(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

class asset.VectorFunctions.Conditional

Bases: pybind11_object

__and__(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.Conditional) asset.VectorFunctions.Conditional
__init__(*args, **kwargs)
__module__ = 'asset.VectorFunctions'
__or__(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.Conditional) asset.VectorFunctions.Conditional
compute(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]]) bool
ifelse(*args, **kwargs)

Overloaded function.

  1. ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. ifelse(self: asset.VectorFunctions.Conditional, arg0: float, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.ScalarFunction, arg1: float) -> asset.VectorFunctions.ScalarFunction

  4. ifelse(self: asset.VectorFunctions.Conditional, arg0: float, arg1: float) -> asset.VectorFunctions.ScalarFunction

  5. ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  6. ifelse(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  7. ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  8. ifelse(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

class asset.VectorFunctions.ConstantScalar

Bases: pybind11_object

IRows(self: asset.VectorFunctions.ConstantScalar) int
ORows(self: asset.VectorFunctions.ConstantScalar) int
__call__(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
__init__(self: asset.VectorFunctions.ConstantScalar, arg0: int, arg1: numpy.ndarray[numpy.float64[1, 1]]) None
__module__ = 'asset.VectorFunctions'
adjointgradient(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]]
compute(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
compute_jacobian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]]
computeall(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
input_domain(self: asset.VectorFunctions.ConstantScalar) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.ConstantScalar) bool
jacobian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]]
name(self: asset.VectorFunctions.ConstantScalar) str
rpt(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
sf(self: asset.VectorFunctions.ConstantScalar) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.ConstantScalar) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.ConstantVector

Bases: pybind11_object

IRows(self: asset.VectorFunctions.ConstantVector) int
ORows(self: asset.VectorFunctions.ConstantVector) int
__call__(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
__init__(self: asset.VectorFunctions.ConstantVector, arg0: int, arg1: numpy.ndarray[numpy.float64[m, 1]]) None
__module__ = 'asset.VectorFunctions'
adjointgradient(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
compute(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
input_domain(self: asset.VectorFunctions.ConstantVector) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.ConstantVector) bool
jacobian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.ConstantVector) str
rpt(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
vf(self: asset.VectorFunctions.ConstantVector) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.DynamicStackTest(arg0: list[asset.VectorFunctions.VectorFunction]) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.Element

Bases: pybind11_object

IRows(self: asset.VectorFunctions.Element) int
ORows(self: asset.VectorFunctions.Element) int
__abs__(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __add__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  3. __add__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __add__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__array_ufunc__ = None
__call__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
__ge__(*args, **kwargs)

Overloaded function.

  1. __ge__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>

  2. __ge__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>

  3. __ge__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.Element, arg0: int) -> asset.VectorFunctions.Element

  2. __getitem__(self: asset.VectorFunctions.Element, arg0: slice) -> asset.VectorFunctions.Segment

__gt__(*args, **kwargs)

Overloaded function.

  1. __gt__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>

  2. __gt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>

  3. __gt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__init__(self: asset.VectorFunctions.Element, arg0: int, arg1: int, arg2: int) None
__le__(*args, **kwargs)

Overloaded function.

  1. __le__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>

  2. __le__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>

  3. __le__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__lt__(*args, **kwargs)

Overloaded function.

  1. __lt__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>

  2. __lt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>

  3. __lt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __mul__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __mul__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__neg__(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
__pow__(*args, **kwargs)

Overloaded function.

  1. __pow__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __pow__(self: asset.VectorFunctions.Element, arg0: int) -> asset.VectorFunctions.ScalarFunction

__radd__(*args, **kwargs)

Overloaded function.

  1. __radd__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __radd__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

__rgt__(self: asset.VectorFunctions.Element, arg0: float) ASSET::GenericConditional<-1>
__rlt__(self: asset.VectorFunctions.Element, arg0: float) ASSET::GenericConditional<-1>
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __rmul__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

__rsub__(*args, **kwargs)

Overloaded function.

  1. __rsub__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __rsub__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

__rtruediv__(self: asset.VectorFunctions.Element, arg0: float) asset.VectorFunctions.ScalarFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __sub__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  3. __sub__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __sub__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  3. __truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

adjointgradient(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

arccos(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
arccosh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
arcsin(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
arcsinh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
arctan(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
arctanh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
coeff(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Element
compute(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
compute_jacobian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]]
computeall(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cos(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
cosh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  2. cwiseProduct(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  2. cwiseQuotient(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

exp(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
head(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Segment
input_domain(self: asset.VectorFunctions.Element) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.Element) bool
jacobian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]]
log(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
name(self: asset.VectorFunctions.Element) str
padded(self: asset.VectorFunctions.Element, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.VectorFunction
pow(self: asset.VectorFunctions.Element, arg0: float) asset.VectorFunctions.ScalarFunction
rpt(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.Element, arg0: int, arg1: int) asset.VectorFunctions.Segment
sf(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
sign(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
sin(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
sinh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
sqrt(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
squared(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Segment
tan(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
tanh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction
tolist(*args, **kwargs)

Overloaded function.

  1. tolist(self: asset.VectorFunctions.Element) -> list[asset.VectorFunctions.Element]

  2. tolist(self: asset.VectorFunctions.Element, arg0: list[int]) -> list[asset.VectorFunctions.Element]

  3. tolist(self: asset.VectorFunctions.Element, arg0: list[tuple[int, int]]) -> list[object]

vf(self: asset.VectorFunctions.Element) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.IOScaled

Bases: pybind11_object

IRows(self: asset.VectorFunctions.IOScaled) int
ORows(self: asset.VectorFunctions.IOScaled) int
__call__(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
__init__(self: asset.VectorFunctions.IOScaled, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) None
__module__ = 'asset.VectorFunctions'
adjointgradient(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
compute(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
input_domain(self: asset.VectorFunctions.IOScaled) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.IOScaled) bool
jacobian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.IOScaled) str
rpt(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
vf(self: asset.VectorFunctions.IOScaled) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.InterpTable1D

Bases: pybind11_object

property ThrowOutOfBounds
property WarnOutOfBounds
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.InterpTable1D, arg0: float) -> numpy.ndarray[numpy.float64[m, 1]]

  2. __call__(self: asset.VectorFunctions.InterpTable1D, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, n]]

  3. __call__(self: asset.VectorFunctions.InterpTable1D, arg0: asset.VectorFunctions.ScalarFunction) -> object

  4. __call__(self: asset.VectorFunctions.InterpTable1D, arg0: asset.VectorFunctions.Element) -> object

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: asset.VectorFunctions.InterpTable1D, ts: numpy.ndarray[numpy.float64[m, 1]], Vs: numpy.ndarray[numpy.float64[m, 1]], axis: int = 0, kind: str = ‘cubic’) -> None

  2. __init__(self: asset.VectorFunctions.InterpTable1D, ts: numpy.ndarray[numpy.float64[m, 1]], Vs: numpy.ndarray[numpy.float64[m, n]], axis: int = 0, kind: str = ‘cubic’) -> None

  3. __init__(self: asset.VectorFunctions.InterpTable1D, Vts: list[numpy.ndarray[numpy.float64[m, 1]]], tvar: int = -1, kind: str = ‘cubic’) -> None

__module__ = 'asset.VectorFunctions'
interp(*args, **kwargs)

Overloaded function.

  1. interp(self: asset.VectorFunctions.InterpTable1D, arg0: float) -> numpy.ndarray[numpy.float64[m, 1]]

  2. interp(self: asset.VectorFunctions.InterpTable1D, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, n]]

interp_deriv1(self: asset.VectorFunctions.InterpTable1D, arg0: float) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]]
interp_deriv2(self: asset.VectorFunctions.InterpTable1D, arg0: float) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]]
sf(self: asset.VectorFunctions.InterpTable1D) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.InterpTable1D) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.InterpTable2D

Bases: pybind11_object

property ThrowOutOfBounds
property WarnOutOfBounds
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) -> float

  2. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]

  3. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  4. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  5. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.ScalarFunction

  6. __call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

__init__(self: asset.VectorFunctions.InterpTable2D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], Z: numpy.ndarray[numpy.float64[m, n]], kind: str = 'cubic') None
__module__ = 'asset.VectorFunctions'
find_elem(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) int
interp(*args, **kwargs)

Overloaded function.

  1. interp(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) -> float

  2. interp(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]

interp_deriv1(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) tuple[float, numpy.ndarray[numpy.float64[2, 1]]]
interp_deriv2(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) tuple[float, numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, 2]]]
sf(self: asset.VectorFunctions.InterpTable2D) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.InterpTable2D) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.InterpTable2DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: int, arg6: bool) float
class asset.VectorFunctions.InterpTable3D

Bases: pybind11_object

property ThrowOutOfBounds
property WarnOutOfBounds
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) -> float

  2. __call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. __call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element, arg2: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.ScalarFunction

  5. __call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

__init__(self: asset.VectorFunctions.InterpTable3D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], zs: numpy.ndarray[numpy.float64[m, 1]], fs: numpy.ndarray[numpy.float64[?, ?, ?]], kind: str = 'cubic', cache: bool = False) None
__module__ = 'asset.VectorFunctions'
interp(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) float
interp_deriv1(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) tuple[float, numpy.ndarray[numpy.float64[3, 1]]]
interp_deriv2(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) tuple[float, numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 3]]]
sf(self: asset.VectorFunctions.InterpTable3D) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.InterpTable3D) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.InterpTable3DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: int, arg8: bool) float
class asset.VectorFunctions.InterpTable4D

Bases: pybind11_object

property ThrowOutOfBounds
property WarnOutOfBounds
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) -> float

  2. __call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction, arg3: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. __call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element, arg2: asset.VectorFunctions.Element, arg3: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  4. __call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction

  5. __call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

__init__(self: asset.VectorFunctions.InterpTable4D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], zs: numpy.ndarray[numpy.float64[m, 1]], ws: numpy.ndarray[numpy.float64[m, 1]], fs: numpy.ndarray[numpy.float64[?, ?, ?, ?]], kind: str = 'cubic', cache: bool = False) None
__module__ = 'asset.VectorFunctions'
interp(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) float
interp_deriv1(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) tuple[float, numpy.ndarray[numpy.float64[4, 1]]]
interp_deriv2(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) tuple[float, numpy.ndarray[numpy.float64[4, 1]], numpy.ndarray[numpy.float64[4, 4]]]
sf(self: asset.VectorFunctions.InterpTable4D) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.InterpTable4D) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.InterpTable4DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: int, arg10: bool) float
class asset.VectorFunctions.PyScalarFunction

Bases: pybind11_object

IRows(self: asset.VectorFunctions.PyScalarFunction) int
ORows(self: asset.VectorFunctions.PyScalarFunction) int
__call__(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
__init__(self: asset.VectorFunctions.PyScalarFunction, IRows: int, Func: Callable[[numpy.ndarray[numpy.float64[m, 1]], detail::args_proxy], numpy.ndarray[numpy.float64[1, 1]]], Jstepsize: float = 1e-06, Hstepsize: float = 0.0001, args: tuple = ()) None
__module__ = 'asset.VectorFunctions'
adjointgradient(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]]
compute(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
compute_jacobian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]]
computeall(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
input_domain(self: asset.VectorFunctions.PyScalarFunction) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.PyScalarFunction) bool
jacobian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]]
name(self: asset.VectorFunctions.PyScalarFunction) str
rpt(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
sf(self: asset.VectorFunctions.PyScalarFunction) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.PyScalarFunction) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.PyVectorFunction

Bases: pybind11_object

IRows(self: asset.VectorFunctions.PyVectorFunction) int
ORows(self: asset.VectorFunctions.PyVectorFunction) int
__call__(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
__init__(self: asset.VectorFunctions.PyVectorFunction, IRows: int, ORows: int, Func: Callable[[numpy.ndarray[numpy.float64[m, 1]], detail::args_proxy], numpy.ndarray[numpy.float64[m, 1]]], Jstepsize: float = 1e-06, Hstepsize: float = 0.0001, args: tuple = ()) None
__module__ = 'asset.VectorFunctions'
adjointgradient(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
compute(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
input_domain(self: asset.VectorFunctions.PyVectorFunction) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.PyVectorFunction) bool
jacobian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.PyVectorFunction) str
rpt(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
vf(self: asset.VectorFunctions.PyVectorFunction) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.RowMatrix

Bases: pybind11_object

__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.RowMatrix

  2. __add__(self: asset.VectorFunctions.RowMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) -> asset.VectorFunctions.RowMatrix

__array_ufunc__ = None
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int) -> None

  2. __init__(self: asset.VectorFunctions.RowMatrix, arg0: list[asset.VectorFunctions.VectorFunction]) -> None

__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix

  2. __mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix

  3. __mul__(self: asset.VectorFunctions.RowMatrix, arg0: float) -> asset.VectorFunctions.RowMatrix

  4. __mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__radd__(self: asset.VectorFunctions.RowMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) asset.VectorFunctions.RowMatrix
__rmul__(self: asset.VectorFunctions.RowMatrix, arg0: float) asset.VectorFunctions.RowMatrix
inverse(self: asset.VectorFunctions.RowMatrix) asset.VectorFunctions.RowMatrix
transpose(self: asset.VectorFunctions.RowMatrix) asset.VectorFunctions.ColMatrix
vf(self: asset.VectorFunctions.RowMatrix) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.ScalarDynamicStackTest(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.ScalarFunction

Bases: pybind11_object

IRows(self: asset.VectorFunctions.ScalarFunction) int
ORows(self: asset.VectorFunctions.ScalarFunction) int
SpeedTest(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
SuperTest(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
__abs__(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __add__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  3. __add__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__array_ufunc__ = None
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[1, 1]]

  2. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  3. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction

  4. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction

  5. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.ScalarFunction

  6. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.ScalarFunction

  7. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction

  8. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.ScalarFunction

  9. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.ScalarFunction

  10. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: float, *args) -> asset.VectorFunctions.ScalarFunction

  11. __call__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.ScalarFunction

__ge__(*args, **kwargs)

Overloaded function.

  1. __ge__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>

  2. __ge__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.ScalarFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction

  2. __getitem__(self: asset.VectorFunctions.ScalarFunction, arg0: slice) -> asset.VectorFunctions.VectorFunction

__gt__(*args, **kwargs)

Overloaded function.

  1. __gt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>

  2. __gt__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> None

  2. __init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.Element) -> None

  3. __init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.PyScalarFunction) -> None

  4. __init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ConstantScalar) -> None

  5. __init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.OptimalControl.InterpFunction_1) -> None

__le__(*args, **kwargs)

Overloaded function.

  1. __le__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>

  2. __le__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__lt__(*args, **kwargs)

Overloaded function.

  1. __lt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>

  2. __lt__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>

__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __mul__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction

  4. __mul__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__neg__(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
__pow__(*args, **kwargs)

Overloaded function.

  1. __pow__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __pow__(self: asset.VectorFunctions.ScalarFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction

__radd__(*args, **kwargs)

Overloaded function.

  1. __radd__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __radd__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

__rgt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) ASSET::GenericConditional<-1>
__rlt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) ASSET::GenericConditional<-1>
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __rmul__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

__rsub__(*args, **kwargs)

Overloaded function.

  1. __rsub__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __rsub__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

__rtruediv__(self: asset.VectorFunctions.ScalarFunction, arg0: float) asset.VectorFunctions.ScalarFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

  2. __sub__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  3. __sub__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction

  2. __truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction

  3. __truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction

  4. __truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

adjointgradient(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

arccos(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
arccosh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
arcsin(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
arcsinh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
arctan(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
arctanh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
coeff(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.ScalarFunction
compute(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]]
compute_jacobian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]]
computeall(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cos(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
cosh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. cwiseProduct(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. cwiseQuotient(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction

eval(*args, **kwargs)

Overloaded function.

  1. eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction

  2. eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction

  3. eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.ScalarFunction

  4. eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.ScalarFunction

  5. eval(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  6. eval(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> asset.VectorFunctions.ScalarFunction

exp(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
head(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction
input_domain(self: asset.VectorFunctions.ScalarFunction) numpy.ndarray[numpy.int32[2, n]]
is_linear(self: asset.VectorFunctions.ScalarFunction) bool
jacobian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]]
log(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
name(self: asset.VectorFunctions.ScalarFunction) str
padded(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction
pow(self: asset.VectorFunctions.ScalarFunction, arg0: float) asset.VectorFunctions.ScalarFunction
rpt(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
sf(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
sign(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
sin(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
sinh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
sqrt(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
squared(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction
tan(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
tanh(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.ScalarFunction
vf(self: asset.VectorFunctions.ScalarFunction) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.ScalarRootFinder(*args, **kwargs)

Overloaded function.

  1. ScalarRootFinder(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: int, arg3: float) -> asset.VectorFunctions.ScalarFunction

  2. ScalarRootFinder(arg0: asset.VectorFunctions.ScalarFunction, arg1: int, arg2: float) -> asset.VectorFunctions.ScalarFunction

class asset.VectorFunctions.Segment

Bases: pybind11_object

IRows(self: asset.VectorFunctions.Segment) int
ORows(self: asset.VectorFunctions.Segment) int
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __add__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  3. __add__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__array_ufunc__ = None
__call__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.Segment, arg0: int) -> ASSET::Segment<-1, 1, -1>

  2. __getitem__(self: asset.VectorFunctions.Segment, arg0: slice) -> asset.VectorFunctions.Segment

__init__(self: asset.VectorFunctions.Segment, arg0: int, arg1: int, arg2: int) None
__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __mul__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__neg__(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
__radd__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __rmul__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __rmul__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__rsub__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __sub__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  3. __sub__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __truediv__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __truediv__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  4. __truediv__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

adjointgradient(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

coeff(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 1, -1>
compute(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cross(*args, **kwargs)

Overloaded function.

  1. cross(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction

  2. cross(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cross(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  4. cross(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

cubed_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. cwiseProduct(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  3. cwiseProduct(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  3. cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction

  3. dot(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction

head(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.Segment
head2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1>
head3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1>
head_2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1>
head_3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1>
input_domain(self: asset.VectorFunctions.Segment) numpy.ndarray[numpy.int32[2, n]]
inverse_cubed_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
inverse_four_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
inverse_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
inverse_squared_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
is_linear(self: asset.VectorFunctions.Segment) bool
jacobian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.Segment) str
norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
normalized(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
normalized_power2(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. normalized_power3(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction

  3. normalized_power3(self: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

normalized_power4(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
normalized_power5(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
padded(self: asset.VectorFunctions.Segment, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.VectorFunction
rpt(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.Segment, arg0: int, arg1: int) asset.VectorFunctions.Segment
segment2(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 2, -1>
segment3(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 3, -1>
segment_2(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 2, -1>
segment_3(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 3, -1>
squared_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
sum(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.Segment
tail2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1>
tail3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1>
tail_2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1>
tail_3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1>
tolist(*args, **kwargs)

Overloaded function.

  1. tolist(self: asset.VectorFunctions.Segment) -> list[ASSET::Segment<-1, 1, -1>]

  2. tolist(self: asset.VectorFunctions.Segment, arg0: list[int]) -> list[ASSET::Segment<-1, 1, -1>]

  3. tolist(self: asset.VectorFunctions.Segment, arg0: list[tuple[int, int]]) -> list[object]

vf(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.Segment2

Bases: pybind11_object

IRows(self: asset.VectorFunctions.Segment2) int
ORows(self: asset.VectorFunctions.Segment2) int
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __add__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction

  3. __add__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__array_ufunc__ = None
__call__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, 1]]
__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.Segment2, arg0: int) -> asset.VectorFunctions.Element

  2. __getitem__(self: asset.VectorFunctions.Segment2, arg0: slice) -> asset.VectorFunctions.Segment

__init__(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int, arg2: int) None
__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __mul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__neg__(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
__radd__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) asset.VectorFunctions.VectorFunction
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __rmul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __rmul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__rsub__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) asset.VectorFunctions.VectorFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __sub__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction

  3. __sub__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  4. __truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

adjointgradient(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

coeff(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Element
compute(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, 1]]
compute_jacobian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, n]]]
computeall(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) tuple[numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cubed_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction

  4. cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction

  4. cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  3. dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.ScalarFunction

  4. dot(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.ScalarFunction

head(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Segment
input_domain(self: asset.VectorFunctions.Segment2) numpy.ndarray[numpy.int32[2, n]]
inverse_cubed_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
inverse_four_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
inverse_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
inverse_squared_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
is_linear(self: asset.VectorFunctions.Segment2) bool
jacobian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, n]]
name(self: asset.VectorFunctions.Segment2) str
norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
normalized(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
normalized_power2(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction

  2. normalized_power3(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction

  3. normalized_power3(self: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction

normalized_power4(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
normalized_power5(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
padded(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.VectorFunction
rpt(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int) asset.VectorFunctions.Segment
squared_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
sum(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Segment
tolist(*args, **kwargs)

Overloaded function.

  1. tolist(self: asset.VectorFunctions.Segment2) -> list[asset.VectorFunctions.Element]

  2. tolist(self: asset.VectorFunctions.Segment2, arg0: list[int]) -> list[asset.VectorFunctions.Element]

  3. tolist(self: asset.VectorFunctions.Segment2, arg0: list[tuple[int, int]]) -> list[object]

vf(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction
class asset.VectorFunctions.Segment3

Bases: pybind11_object

IRows(self: asset.VectorFunctions.Segment3) int
ORows(self: asset.VectorFunctions.Segment3) int
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __add__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  3. __add__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__array_ufunc__ = None
__call__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, 1]]
__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.Segment3, arg0: int) -> asset.VectorFunctions.Element

  2. __getitem__(self: asset.VectorFunctions.Segment3, arg0: slice) -> asset.VectorFunctions.Segment

__init__(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int, arg2: int) None
__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __mul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__neg__(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
__radd__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) asset.VectorFunctions.VectorFunction
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __rmul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __rmul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__rsub__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) asset.VectorFunctions.VectorFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __sub__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  3. __sub__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  3. __truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

  4. __truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

adjointgradient(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

coeff(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Element
compute(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, 1]]
compute_jacobian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, n]]]
computeall(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cross(*args, **kwargs)

Overloaded function.

  1. cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cross(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  4. cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

cubed_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  4. cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  4. cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  3. dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.ScalarFunction

  4. dot(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.ScalarFunction

head(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment
head2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2
head_2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2
input_domain(self: asset.VectorFunctions.Segment3) numpy.ndarray[numpy.int32[2, n]]
inverse_cubed_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
inverse_four_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
inverse_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
inverse_squared_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
is_linear(self: asset.VectorFunctions.Segment3) bool
jacobian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, n]]
name(self: asset.VectorFunctions.Segment3) str
norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
normalized(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
normalized_power2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  2. normalized_power3(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction

  3. normalized_power3(self: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

normalized_power4(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
normalized_power5(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
padded(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.VectorFunction
rpt(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int) asset.VectorFunctions.Segment
segment2(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment2
segment_2(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment2
squared_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
sum(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment
tail2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2
tail_2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2
tolist(*args, **kwargs)

Overloaded function.

  1. tolist(self: asset.VectorFunctions.Segment3) -> list[asset.VectorFunctions.Element]

  2. tolist(self: asset.VectorFunctions.Segment3, arg0: list[int]) -> list[asset.VectorFunctions.Element]

  3. tolist(self: asset.VectorFunctions.Segment3, arg0: list[tuple[int, int]]) -> list[object]

vf(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.Stack(*args, **kwargs)

Overloaded function.

  1. Stack(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction

  2. Stack(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.StackScalar(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.Sum(*args, **kwargs)

Overloaded function.

  1. Sum(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction

  2. Sum(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.SumElems(*args, **kwargs)

Overloaded function.

  1. SumElems(arg0: list[asset.VectorFunctions.Element]) -> asset.VectorFunctions.ScalarFunction

  2. SumElems(arg0: list[asset.VectorFunctions.Element], arg1: list[float]) -> asset.VectorFunctions.ScalarFunction

asset.VectorFunctions.SumScalar(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.ScalarFunction
class asset.VectorFunctions.VectorFunction

Bases: pybind11_object

IRows(self: asset.VectorFunctions.VectorFunction) int
ORows(self: asset.VectorFunctions.VectorFunction) int
SpeedTest(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
SuperTest(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
__add__(*args, **kwargs)

Overloaded function.

  1. __add__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __add__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__array_ufunc__ = None
__call__(*args, **kwargs)

Overloaded function.

  1. __call__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]

  2. __call__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. __call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  4. __call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction

  5. __call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.VectorFunction

  6. __call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction

  7. __call__(self: asset.VectorFunctions.VectorFunction, arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction

  8. __call__(self: asset.VectorFunctions.VectorFunction, arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction

  9. __call__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction

  10. __call__(self: asset.VectorFunctions.VectorFunction, arg0: float, *args) -> asset.VectorFunctions.VectorFunction

  11. __call__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction

__getitem__(*args, **kwargs)

Overloaded function.

  1. __getitem__(self: asset.VectorFunctions.VectorFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction

  2. __getitem__(self: asset.VectorFunctions.VectorFunction, arg0: slice) -> asset.VectorFunctions.VectorFunction

__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> None

  2. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> None

  3. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment) -> None

  4. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Element) -> None

  5. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Arguments) -> None

  6. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment2) -> None

  7. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment3) -> None

  8. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.PyVectorFunction) -> None

  9. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.PyScalarFunction) -> None

  10. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ConstantVector) -> None

  11. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ConstantScalar) -> None

  12. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.IOScaled) -> None

  13. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction) -> None

  14. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_1) -> None

  15. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_3) -> None

  16. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_6) -> None

  17. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x.ode) -> None

  18. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x.integrator) -> None

  19. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u.ode) -> None

  20. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u.integrator) -> None

  21. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u_p.ode) -> None

  22. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u_p.integrator) -> None

  23. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6_3.ode) -> None

  24. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6_3.integrator) -> None

  25. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_7_3.ode) -> None

  26. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_7_3.integrator) -> None

  27. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_2_1.ode) -> None

  28. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_2_1.integrator) -> None

  29. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6.ode) -> None

  30. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6.integrator) -> None

  31. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_4.ode) -> None

  32. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_4.integrator) -> None

  33. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.ode) -> None

  34. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.integrator) -> None

  35. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.KeplerPropagator) -> None

  36. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.ModifiedToCartesian) -> None

  37. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.CartesianToClassic) -> None

  38. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Extensions.cpp_cr3bp_ad) -> None

  39. __init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Extensions.ModifiedDynamicsAD) -> None

__module__ = 'asset.VectorFunctions'
__mul__(*args, **kwargs)

Overloaded function.

  1. __mul__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __mul__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __mul__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__neg__(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
__radd__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__rmul__(*args, **kwargs)

Overloaded function.

  1. __rmul__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __rmul__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __rmul__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

__rsub__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction
__sub__(*args, **kwargs)

Overloaded function.

  1. __sub__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. __sub__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

__truediv__(*args, **kwargs)

Overloaded function.

  1. __truediv__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction

  2. __truediv__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  3. __truediv__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  4. __truediv__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

adjointgradient(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
adjointhessian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
apply(*args, **kwargs)

Overloaded function.

  1. apply(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. apply(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

coeff(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.ScalarFunction
compute(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]
compute_jacobian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
computeall(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]]
cross(*args, **kwargs)

Overloaded function.

  1. cross(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction

  2. cross(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction

  3. cross(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

  4. cross(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

cubed_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction

  2. cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction

  2. cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

dot(*args, **kwargs)

Overloaded function.

  1. dot(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction

  2. dot(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction

  3. dot(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction

eval(*args, **kwargs)

Overloaded function.

  1. eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction

  2. eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction

  3. eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.VectorFunction

  4. eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction

  5. eval(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  6. eval(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> asset.VectorFunctions.VectorFunction

head(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
head2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
head3(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
head_2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
head_3(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
input_domain(self: asset.VectorFunctions.VectorFunction) numpy.ndarray[numpy.int32[2, n]]
inverse_cubed_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
inverse_four_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
inverse_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
inverse_squared_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
is_linear(self: asset.VectorFunctions.VectorFunction) bool
jacobian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
name(self: asset.VectorFunctions.VectorFunction) str
norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
normalized(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
normalized_power2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  2. normalized_power3(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction

  3. normalized_power3(self: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

normalized_power4(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
normalized_power5(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
padded(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
padded_lower(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
padded_upper(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
rpt(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None
segment(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction
segment2(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
segment3(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
segment_2(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
segment_3(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
squared_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
sum(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction
tail(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction
tail2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
tail3(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
tail_2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
tail_3(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
vf(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction
asset.VectorFunctions.abs(*args, **kwargs)

Overloaded function.

  1. abs(arg0: asset.VectorFunctions.Element) -> object

  2. abs(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arccos(*args, **kwargs)

Overloaded function.

  1. arccos(arg0: asset.VectorFunctions.Element) -> object

  2. arccos(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arccosh(*args, **kwargs)

Overloaded function.

  1. arccosh(arg0: asset.VectorFunctions.Element) -> object

  2. arccosh(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arcsin(*args, **kwargs)

Overloaded function.

  1. arcsin(arg0: asset.VectorFunctions.Element) -> object

  2. arcsin(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arcsinh(*args, **kwargs)

Overloaded function.

  1. arcsinh(arg0: asset.VectorFunctions.Element) -> object

  2. arcsinh(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arctan(*args, **kwargs)

Overloaded function.

  1. arctan(arg0: asset.VectorFunctions.Element) -> object

  2. arctan(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.arctan2(*args, **kwargs)

Overloaded function.

  1. arctan2(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. arctan2(arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

  3. arctan2(arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  4. arctan2(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction

asset.VectorFunctions.arctanh(*args, **kwargs)

Overloaded function.

  1. arctanh(arg0: asset.VectorFunctions.Element) -> object

  2. arctanh(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.cos(*args, **kwargs)

Overloaded function.

  1. cos(arg0: asset.VectorFunctions.Element) -> object

  2. cos(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.cosh(*args, **kwargs)

Overloaded function.

  1. cosh(arg0: asset.VectorFunctions.Element) -> object

  2. cosh(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.cross(*args, **kwargs)

Overloaded function.

  1. cross(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  2. cross(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  3. cross(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  4. cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object

  5. cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment) -> object

  6. cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object

  7. cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object

  8. cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object

  9. cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object

  10. cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object

  11. cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object

  12. cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object

  13. cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object

  14. cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object

  15. cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.cubed_norm(*args, **kwargs)

Overloaded function.

  1. cubed_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. cubed_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. cubed_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. cubed_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. cubed_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.cwiseProduct(*args, **kwargs)

Overloaded function.

  1. cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object

  2. cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  3. cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  4. cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  5. cwiseProduct(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object

  6. cwiseProduct(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object

  7. cwiseProduct(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object

  8. cwiseProduct(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object

  9. cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object

  10. cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object

  11. cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object

  12. cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object

  13. cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object

  14. cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object

  15. cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object

  16. cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object

  17. cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object

  18. cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object

  19. cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object

  20. cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object

  21. cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object

  22. cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.cwiseQuotient(*args, **kwargs)

Overloaded function.

  1. cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object

  2. cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  3. cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  4. cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  5. cwiseQuotient(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object

  6. cwiseQuotient(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object

  7. cwiseQuotient(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object

  8. cwiseQuotient(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object

  9. cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object

  10. cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object

  11. cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object

  12. cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object

  13. cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object

  14. cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object

  15. cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object

  16. cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object

  17. cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object

  18. cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object

  19. cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object

  20. cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object

  21. cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object

  22. cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.divtest(*args, **kwargs)

Overloaded function.

  1. divtest(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction

  2. divtest(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.dot(*args, **kwargs)

Overloaded function.

  1. dot(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object

  2. dot(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  3. dot(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  4. dot(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object

  5. dot(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object

  6. dot(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object

  7. dot(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object

  8. dot(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object

  9. dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object

  10. dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object

  11. dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object

  12. dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object

  13. dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object

  14. dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object

  15. dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object

  16. dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object

  17. dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object

  18. dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object

  19. dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object

  20. dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object

  21. dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object

  22. dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.doublecross(*args, **kwargs)

Overloaded function.

  1. doublecross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3, arg2: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  2. doublecross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction, arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.exp(*args, **kwargs)

Overloaded function.

  1. exp(arg0: asset.VectorFunctions.Element) -> object

  2. exp(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.ifelse(*args, **kwargs)

Overloaded function.

  1. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  2. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: float, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction

  3. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.ScalarFunction, arg2: float) -> asset.VectorFunctions.ScalarFunction

  4. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: float, arg2: float) -> asset.VectorFunctions.ScalarFunction

  5. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.VectorFunction, arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  6. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  7. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.VectorFunction, arg2: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  8. ifelse(arg0: ASSET::GenericConditional<-1>, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.inverse_cubed_norm(*args, **kwargs)

Overloaded function.

  1. inverse_cubed_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. inverse_cubed_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. inverse_cubed_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. inverse_cubed_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. inverse_cubed_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.inverse_four_norm(*args, **kwargs)

Overloaded function.

  1. inverse_four_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. inverse_four_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. inverse_four_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. inverse_four_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. inverse_four_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.inverse_norm(*args, **kwargs)

Overloaded function.

  1. inverse_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. inverse_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. inverse_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. inverse_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. inverse_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.inverse_squared_norm(*args, **kwargs)

Overloaded function.

  1. inverse_squared_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. inverse_squared_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. inverse_squared_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. inverse_squared_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. inverse_squared_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.log(*args, **kwargs)

Overloaded function.

  1. log(arg0: asset.VectorFunctions.Element) -> object

  2. log(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.matmul(*args, **kwargs)

Overloaded function.

  1. matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix

  2. matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix

  3. matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  4. matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  5. matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix

  6. matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix

  7. matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  8. matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction

  9. matmul(arg0: numpy.ndarray[numpy.float64[2, 2]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  10. matmul(arg0: numpy.ndarray[numpy.float64[3, 3]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  11. matmul(arg0: numpy.ndarray[numpy.float64[m, n]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.norm(*args, **kwargs)

Overloaded function.

  1. norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. norm(arg0: asset.VectorFunctions.Segment) -> object

  3. norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalize(*args, **kwargs)

Overloaded function.

  1. normalize(arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]

  2. normalize(arg0: asset.VectorFunctions.Arguments) -> object

  3. normalize(arg0: asset.VectorFunctions.Segment) -> object

  4. normalize(arg0: asset.VectorFunctions.Segment2) -> object

  5. normalize(arg0: asset.VectorFunctions.Segment3) -> object

  6. normalize(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalized(*args, **kwargs)

Overloaded function.

  1. normalized(arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]

  2. normalized(arg0: asset.VectorFunctions.Arguments) -> object

  3. normalized(arg0: asset.VectorFunctions.Segment) -> object

  4. normalized(arg0: asset.VectorFunctions.Segment2) -> object

  5. normalized(arg0: asset.VectorFunctions.Segment3) -> object

  6. normalized(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalized_power2(*args, **kwargs)

Overloaded function.

  1. normalized_power2(arg0: asset.VectorFunctions.Arguments) -> object

  2. normalized_power2(arg0: asset.VectorFunctions.Segment) -> object

  3. normalized_power2(arg0: asset.VectorFunctions.Segment2) -> object

  4. normalized_power2(arg0: asset.VectorFunctions.Segment3) -> object

  5. normalized_power2(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalized_power3(*args, **kwargs)

Overloaded function.

  1. normalized_power3(arg0: asset.VectorFunctions.Arguments) -> object

  2. normalized_power3(arg0: asset.VectorFunctions.Segment) -> object

  3. normalized_power3(arg0: asset.VectorFunctions.Segment2) -> object

  4. normalized_power3(arg0: asset.VectorFunctions.Segment3) -> object

  5. normalized_power3(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalized_power4(*args, **kwargs)

Overloaded function.

  1. normalized_power4(arg0: asset.VectorFunctions.Arguments) -> object

  2. normalized_power4(arg0: asset.VectorFunctions.Segment) -> object

  3. normalized_power4(arg0: asset.VectorFunctions.Segment2) -> object

  4. normalized_power4(arg0: asset.VectorFunctions.Segment3) -> object

  5. normalized_power4(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.normalized_power5(*args, **kwargs)

Overloaded function.

  1. normalized_power5(arg0: asset.VectorFunctions.Arguments) -> object

  2. normalized_power5(arg0: asset.VectorFunctions.Segment) -> object

  3. normalized_power5(arg0: asset.VectorFunctions.Segment2) -> object

  4. normalized_power5(arg0: asset.VectorFunctions.Segment3) -> object

  5. normalized_power5(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.pow(*args, **kwargs)

Overloaded function.

  1. pow(arg0: asset.VectorFunctions.Element) -> object

  2. pow(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.quatProduct(*args, **kwargs)

Overloaded function.

  1. quatProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  2. quatProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  3. quatProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  4. quatProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.quatRotate(*args, **kwargs)

Overloaded function.

  1. quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction

  2. quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction

  3. quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction

  4. quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.sign(*args, **kwargs)

Overloaded function.

  1. sign(arg0: asset.VectorFunctions.Element) -> object

  2. sign(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.sin(*args, **kwargs)

Overloaded function.

  1. sin(arg0: asset.VectorFunctions.Element) -> object

  2. sin(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.sinh(*args, **kwargs)

Overloaded function.

  1. sinh(arg0: asset.VectorFunctions.Element) -> object

  2. sinh(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.sqrt(*args, **kwargs)

Overloaded function.

  1. sqrt(arg0: asset.VectorFunctions.Element) -> object

  2. sqrt(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.squared(*args, **kwargs)

Overloaded function.

  1. squared(arg0: asset.VectorFunctions.Element) -> object

  2. squared(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.squared_norm(*args, **kwargs)

Overloaded function.

  1. squared_norm(arg0: asset.VectorFunctions.Arguments) -> object

  2. squared_norm(arg0: asset.VectorFunctions.Segment) -> object

  3. squared_norm(arg0: asset.VectorFunctions.Segment2) -> object

  4. squared_norm(arg0: asset.VectorFunctions.Segment3) -> object

  5. squared_norm(arg0: asset.VectorFunctions.VectorFunction) -> object

asset.VectorFunctions.stack(*args, **kwargs)

Overloaded function.

  1. stack(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction

  2. stack(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction

  3. stack(arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction

  4. stack(arg0: float, *args) -> asset.VectorFunctions.VectorFunction

  5. stack(arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.stack_scalar(*args, **kwargs)

Overloaded function.

  1. stack_scalar(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction

  2. stack_scalar(arg0: asset.VectorFunctions.ScalarFunction, *args) -> asset.VectorFunctions.VectorFunction

  3. stack_scalar(arg0: float, *args) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.sum(*args, **kwargs)

Overloaded function.

  1. sum(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction

  2. sum(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction

  3. sum(arg0: asset.VectorFunctions.ScalarFunction, *args) -> asset.VectorFunctions.ScalarFunction

  4. sum(arg0: float, *args) -> asset.VectorFunctions.ScalarFunction

  5. sum(arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction

  6. sum(arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction

asset.VectorFunctions.tan(*args, **kwargs)

Overloaded function.

  1. tan(arg0: asset.VectorFunctions.Element) -> object

  2. tan(arg0: asset.VectorFunctions.ScalarFunction) -> object

asset.VectorFunctions.tanh(*args, **kwargs)

Overloaded function.

  1. tanh(arg0: asset.VectorFunctions.Element) -> object

  2. tanh(arg0: asset.VectorFunctions.ScalarFunction) -> object