Vector Functions¶
SubModule Containing Vector and Scalar Function Types and Functions
- class asset.VectorFunctions.Arguments¶
Bases:
pybind11_object
- Constant(*args, **kwargs)¶
Overloaded function.
Constant(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
Constant(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.ScalarFunction
- IRows(self: asset.VectorFunctions.Arguments) int ¶
- ORows(self: asset.VectorFunctions.Arguments) int ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
- __array_ufunc__ = None¶
- __call__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.Arguments, arg0: int) -> asset.VectorFunctions.Element
__getitem__(self: asset.VectorFunctions.Arguments, arg0: slice) -> asset.VectorFunctions.Segment
- __init__(self: asset.VectorFunctions.Arguments, arg0: int) None ¶
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __neg__(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction ¶
- __radd__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __rsub__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.Arguments, arg0: float) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- adjointgradient(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Element ¶
- compute(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cross(*args, **kwargs)¶
Overloaded function.
cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Arguments, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
- cubed_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Arguments, arg0: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Segment ¶
- head2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1> ¶
- head3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1> ¶
- head_2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1> ¶
- head_3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1> ¶
- input_domain(self: asset.VectorFunctions.Arguments) numpy.ndarray[numpy.int32[2, n]] ¶
- inverse_cubed_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- inverse_four_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- inverse_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- inverse_squared_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- is_linear(self: asset.VectorFunctions.Arguments) bool ¶
- jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.Arguments) str ¶
- normalized(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction ¶
- normalized_power2(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction ¶
- normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Arguments) -> asset.VectorFunctions.VectorFunction
- normalized_power4(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction ¶
- normalized_power5(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.VectorFunction ¶
- padded(self: asset.VectorFunctions.Arguments, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.VectorFunction ¶
- rpt(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.Arguments, arg0: int, arg1: int) asset.VectorFunctions.Segment ¶
- segment2(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 2, -1> ¶
- segment3(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 3, -1> ¶
- segment_2(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 2, -1> ¶
- segment_3(self: asset.VectorFunctions.Arguments, arg0: int) ASSET::Segment<-1, 3, -1> ¶
- squared_norm(self: asset.VectorFunctions.Arguments) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.Arguments, arg0: int) asset.VectorFunctions.Segment ¶
- tail2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1> ¶
- tail3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1> ¶
- tail_2(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 2, -1> ¶
- tail_3(self: asset.VectorFunctions.Arguments) ASSET::Segment<-1, 3, -1> ¶
- tolist(*args, **kwargs)¶
Overloaded function.
tolist(self: asset.VectorFunctions.Arguments) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Arguments, arg0: list[int]) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Arguments, arg0: list[tuple[int, int]]) -> list[object]
- class asset.VectorFunctions.ColMatrix¶
Bases:
pybind11_object
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.ColMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) -> asset.VectorFunctions.ColMatrix
__add__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix
- __array_ufunc__ = None¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int) -> None
__init__(self: asset.VectorFunctions.ColMatrix, arg0: list[asset.VectorFunctions.VectorFunction]) -> None
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix
__mul__(self: asset.VectorFunctions.ColMatrix, arg0: ASSET::MatrixFunctionView<ASSET::GenericFunction<-1, -1>, -1, -1, 1>) -> asset.VectorFunctions.ColMatrix
__mul__(self: asset.VectorFunctions.ColMatrix, arg0: float) -> asset.VectorFunctions.ColMatrix
__mul__(self: asset.VectorFunctions.ColMatrix, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __radd__(self: asset.VectorFunctions.ColMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) asset.VectorFunctions.ColMatrix ¶
- __rmul__(self: asset.VectorFunctions.ColMatrix, arg0: float) asset.VectorFunctions.ColMatrix ¶
- inverse(self: asset.VectorFunctions.ColMatrix) asset.VectorFunctions.ColMatrix ¶
- transpose(self: asset.VectorFunctions.ColMatrix) ASSET::MatrixFunctionView<ASSET::GenericFunction<-1, -1>, -1, -1, 1> ¶
- class asset.VectorFunctions.Comparative¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
- __module__ = 'asset.VectorFunctions'¶
- compute(self: asset.VectorFunctions.Comparative, arg0: numpy.ndarray[numpy.float64[m, 1]]) bool ¶
- max(*args, **kwargs)¶
Overloaded function.
max(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
max(self: float, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
max(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
max(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
max(self: numpy.ndarray[numpy.float64[m, 1]], arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
max(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- min(*args, **kwargs)¶
Overloaded function.
min(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
min(self: float, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
min(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
min(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
min(self: numpy.ndarray[numpy.float64[m, 1]], arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
min(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- class asset.VectorFunctions.Conditional¶
Bases:
pybind11_object
- __and__(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.Conditional) asset.VectorFunctions.Conditional ¶
- __init__(*args, **kwargs)¶
- __module__ = 'asset.VectorFunctions'¶
- __or__(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.Conditional) asset.VectorFunctions.Conditional ¶
- compute(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]]) bool ¶
- ifelse(*args, **kwargs)¶
Overloaded function.
ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: float, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.ScalarFunction, arg1: float) -> asset.VectorFunctions.ScalarFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: float, arg1: float) -> asset.VectorFunctions.ScalarFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
ifelse(self: asset.VectorFunctions.Conditional, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- class asset.VectorFunctions.ConstantScalar¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.ConstantScalar) int ¶
- ORows(self: asset.VectorFunctions.ConstantScalar) int ¶
- __call__(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- __init__(self: asset.VectorFunctions.ConstantScalar, arg0: int, arg1: numpy.ndarray[numpy.float64[1, 1]]) None ¶
- __module__ = 'asset.VectorFunctions'¶
- adjointgradient(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]] ¶
- computeall(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.VectorFunctions.ConstantScalar) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.ConstantScalar) bool ¶
- jacobian(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]] ¶
- name(self: asset.VectorFunctions.ConstantScalar) str ¶
- rpt(self: asset.VectorFunctions.ConstantScalar, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.VectorFunctions.ConstantVector¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.ConstantVector) int ¶
- ORows(self: asset.VectorFunctions.ConstantVector) int ¶
- __call__(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __init__(self: asset.VectorFunctions.ConstantVector, arg0: int, arg1: numpy.ndarray[numpy.float64[m, 1]]) None ¶
- __module__ = 'asset.VectorFunctions'¶
- adjointgradient(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.VectorFunctions.ConstantVector) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.ConstantVector) bool ¶
- jacobian(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.ConstantVector) str ¶
- rpt(self: asset.VectorFunctions.ConstantVector, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- asset.VectorFunctions.DynamicStackTest(arg0: list[asset.VectorFunctions.VectorFunction]) asset.VectorFunctions.VectorFunction ¶
- class asset.VectorFunctions.Element¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.Element) int ¶
- ORows(self: asset.VectorFunctions.Element) int ¶
- __abs__(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__add__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__add__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__add__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __array_ufunc__ = None¶
- __call__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- __ge__(*args, **kwargs)¶
Overloaded function.
__ge__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>
__ge__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>
__ge__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.Element, arg0: int) -> asset.VectorFunctions.Element
__getitem__(self: asset.VectorFunctions.Element, arg0: slice) -> asset.VectorFunctions.Segment
- __gt__(*args, **kwargs)¶
Overloaded function.
__gt__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>
__gt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>
__gt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __init__(self: asset.VectorFunctions.Element, arg0: int, arg1: int, arg2: int) None ¶
- __le__(*args, **kwargs)¶
Overloaded function.
__le__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>
__le__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>
__le__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __lt__(*args, **kwargs)¶
Overloaded function.
__lt__(self: asset.VectorFunctions.Element, arg0: float) -> ASSET::GenericConditional<-1>
__lt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> ASSET::GenericConditional<-1>
__lt__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__mul__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__mul__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __neg__(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- __pow__(*args, **kwargs)¶
Overloaded function.
__pow__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__pow__(self: asset.VectorFunctions.Element, arg0: int) -> asset.VectorFunctions.ScalarFunction
- __radd__(*args, **kwargs)¶
Overloaded function.
__radd__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__radd__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
- __rgt__(self: asset.VectorFunctions.Element, arg0: float) ASSET::GenericConditional<-1> ¶
- __rlt__(self: asset.VectorFunctions.Element, arg0: float) ASSET::GenericConditional<-1> ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__rmul__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- __rsub__(*args, **kwargs)¶
Overloaded function.
__rsub__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__rsub__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
- __rtruediv__(self: asset.VectorFunctions.Element, arg0: float) asset.VectorFunctions.ScalarFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__sub__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__sub__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__sub__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.Element, arg0: float) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- adjointgradient(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- arccosh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- arcsinh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- arctanh(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- coeff(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Element ¶
- compute(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]] ¶
- computeall(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
cwiseProduct(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
cwiseQuotient(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.Element, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Segment ¶
- input_domain(self: asset.VectorFunctions.Element) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.Element) bool ¶
- jacobian(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]] ¶
- name(self: asset.VectorFunctions.Element) str ¶
- padded(self: asset.VectorFunctions.Element, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.VectorFunction ¶
- pow(self: asset.VectorFunctions.Element, arg0: float) asset.VectorFunctions.ScalarFunction ¶
- rpt(self: asset.VectorFunctions.Element, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.Element, arg0: int, arg1: int) asset.VectorFunctions.Segment ¶
- squared(self: asset.VectorFunctions.Element) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.Element, arg0: int) asset.VectorFunctions.Segment ¶
- tolist(*args, **kwargs)¶
Overloaded function.
tolist(self: asset.VectorFunctions.Element) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Element, arg0: list[int]) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Element, arg0: list[tuple[int, int]]) -> list[object]
- class asset.VectorFunctions.IOScaled¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.IOScaled) int ¶
- ORows(self: asset.VectorFunctions.IOScaled) int ¶
- __call__(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __init__(self: asset.VectorFunctions.IOScaled, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) None ¶
- __module__ = 'asset.VectorFunctions'¶
- adjointgradient(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.VectorFunctions.IOScaled) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.IOScaled) bool ¶
- jacobian(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.IOScaled) str ¶
- rpt(self: asset.VectorFunctions.IOScaled, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.VectorFunctions.InterpTable1D¶
Bases:
pybind11_object
- property ThrowOutOfBounds¶
- property WarnOutOfBounds¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.InterpTable1D, arg0: float) -> numpy.ndarray[numpy.float64[m, 1]]
__call__(self: asset.VectorFunctions.InterpTable1D, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, n]]
__call__(self: asset.VectorFunctions.InterpTable1D, arg0: asset.VectorFunctions.ScalarFunction) -> object
__call__(self: asset.VectorFunctions.InterpTable1D, arg0: asset.VectorFunctions.Element) -> object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.VectorFunctions.InterpTable1D, ts: numpy.ndarray[numpy.float64[m, 1]], Vs: numpy.ndarray[numpy.float64[m, 1]], axis: int = 0, kind: str = ‘cubic’) -> None
__init__(self: asset.VectorFunctions.InterpTable1D, ts: numpy.ndarray[numpy.float64[m, 1]], Vs: numpy.ndarray[numpy.float64[m, n]], axis: int = 0, kind: str = ‘cubic’) -> None
__init__(self: asset.VectorFunctions.InterpTable1D, Vts: list[numpy.ndarray[numpy.float64[m, 1]]], tvar: int = -1, kind: str = ‘cubic’) -> None
- __module__ = 'asset.VectorFunctions'¶
- interp(*args, **kwargs)¶
Overloaded function.
interp(self: asset.VectorFunctions.InterpTable1D, arg0: float) -> numpy.ndarray[numpy.float64[m, 1]]
interp(self: asset.VectorFunctions.InterpTable1D, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, n]]
- interp_deriv1(self: asset.VectorFunctions.InterpTable1D, arg0: float) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- interp_deriv2(self: asset.VectorFunctions.InterpTable1D, arg0: float) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- class asset.VectorFunctions.InterpTable2D¶
Bases:
pybind11_object
- property ThrowOutOfBounds¶
- property WarnOutOfBounds¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) -> float
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable2D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
- __init__(self: asset.VectorFunctions.InterpTable2D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], Z: numpy.ndarray[numpy.float64[m, n]], kind: str = 'cubic') None ¶
- __module__ = 'asset.VectorFunctions'¶
- find_elem(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) int ¶
- interp(*args, **kwargs)¶
Overloaded function.
interp(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) -> float
interp(self: asset.VectorFunctions.InterpTable2D, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]
- interp_deriv1(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) tuple[float, numpy.ndarray[numpy.float64[2, 1]]] ¶
- interp_deriv2(self: asset.VectorFunctions.InterpTable2D, arg0: float, arg1: float) tuple[float, numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, 2]]] ¶
- asset.VectorFunctions.InterpTable2DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: int, arg6: bool) float ¶
- class asset.VectorFunctions.InterpTable3D¶
Bases:
pybind11_object
- property ThrowOutOfBounds¶
- property WarnOutOfBounds¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) -> float
__call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element, arg2: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable3D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
- __init__(self: asset.VectorFunctions.InterpTable3D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], zs: numpy.ndarray[numpy.float64[m, 1]], fs: numpy.ndarray[numpy.float64[?, ?, ?]], kind: str = 'cubic', cache: bool = False) None ¶
- __module__ = 'asset.VectorFunctions'¶
- interp(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) float ¶
- interp_deriv1(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) tuple[float, numpy.ndarray[numpy.float64[3, 1]]] ¶
- interp_deriv2(self: asset.VectorFunctions.InterpTable3D, arg0: float, arg1: float, arg2: float) tuple[float, numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 3]]] ¶
- asset.VectorFunctions.InterpTable3DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: int, arg8: bool) float ¶
- class asset.VectorFunctions.InterpTable4D¶
Bases:
pybind11_object
- property ThrowOutOfBounds¶
- property WarnOutOfBounds¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) -> float
__call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction, arg3: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element, arg2: asset.VectorFunctions.Element, arg3: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.InterpTable4D, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
- __init__(self: asset.VectorFunctions.InterpTable4D, xs: numpy.ndarray[numpy.float64[m, 1]], ys: numpy.ndarray[numpy.float64[m, 1]], zs: numpy.ndarray[numpy.float64[m, 1]], ws: numpy.ndarray[numpy.float64[m, 1]], fs: numpy.ndarray[numpy.float64[?, ?, ?, ?]], kind: str = 'cubic', cache: bool = False) None ¶
- __module__ = 'asset.VectorFunctions'¶
- interp(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) float ¶
- interp_deriv1(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) tuple[float, numpy.ndarray[numpy.float64[4, 1]]] ¶
- interp_deriv2(self: asset.VectorFunctions.InterpTable4D, arg0: float, arg1: float, arg2: float, arg3: float) tuple[float, numpy.ndarray[numpy.float64[4, 1]], numpy.ndarray[numpy.float64[4, 4]]] ¶
- asset.VectorFunctions.InterpTable4DSpeedTest(arg0: asset.VectorFunctions.ScalarFunction, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: int, arg10: bool) float ¶
- class asset.VectorFunctions.PyScalarFunction¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.PyScalarFunction) int ¶
- ORows(self: asset.VectorFunctions.PyScalarFunction) int ¶
- __call__(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- __init__(self: asset.VectorFunctions.PyScalarFunction, IRows: int, Func: Callable[[numpy.ndarray[numpy.float64[m, 1]], detail::args_proxy], numpy.ndarray[numpy.float64[1, 1]]], Jstepsize: float = 1e-06, Hstepsize: float = 0.0001, args: tuple = ()) None ¶
- __module__ = 'asset.VectorFunctions'¶
- adjointgradient(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]] ¶
- computeall(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.VectorFunctions.PyScalarFunction) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.PyScalarFunction) bool ¶
- jacobian(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]] ¶
- name(self: asset.VectorFunctions.PyScalarFunction) str ¶
- rpt(self: asset.VectorFunctions.PyScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.VectorFunctions.PyVectorFunction¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.PyVectorFunction) int ¶
- ORows(self: asset.VectorFunctions.PyVectorFunction) int ¶
- __call__(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __init__(self: asset.VectorFunctions.PyVectorFunction, IRows: int, ORows: int, Func: Callable[[numpy.ndarray[numpy.float64[m, 1]], detail::args_proxy], numpy.ndarray[numpy.float64[m, 1]]], Jstepsize: float = 1e-06, Hstepsize: float = 0.0001, args: tuple = ()) None ¶
- __module__ = 'asset.VectorFunctions'¶
- adjointgradient(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.VectorFunctions.PyVectorFunction) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.PyVectorFunction) bool ¶
- jacobian(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.PyVectorFunction) str ¶
- rpt(self: asset.VectorFunctions.PyVectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.VectorFunctions.RowMatrix¶
Bases:
pybind11_object
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.RowMatrix
__add__(self: asset.VectorFunctions.RowMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) -> asset.VectorFunctions.RowMatrix
- __array_ufunc__ = None¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int) -> None
__init__(self: asset.VectorFunctions.RowMatrix, arg0: list[asset.VectorFunctions.VectorFunction]) -> None
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix
__mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix
__mul__(self: asset.VectorFunctions.RowMatrix, arg0: float) -> asset.VectorFunctions.RowMatrix
__mul__(self: asset.VectorFunctions.RowMatrix, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __radd__(self: asset.VectorFunctions.RowMatrix, arg0: numpy.ndarray[numpy.float64[m, n]]) asset.VectorFunctions.RowMatrix ¶
- __rmul__(self: asset.VectorFunctions.RowMatrix, arg0: float) asset.VectorFunctions.RowMatrix ¶
- inverse(self: asset.VectorFunctions.RowMatrix) asset.VectorFunctions.RowMatrix ¶
- transpose(self: asset.VectorFunctions.RowMatrix) asset.VectorFunctions.ColMatrix ¶
- asset.VectorFunctions.ScalarDynamicStackTest(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.VectorFunction ¶
- class asset.VectorFunctions.ScalarFunction¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.ScalarFunction) int ¶
- ORows(self: asset.VectorFunctions.ScalarFunction) int ¶
- SpeedTest(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- SuperTest(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__add__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__add__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __array_ufunc__ = None¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[1, 1]]
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: float, *args) -> asset.VectorFunctions.ScalarFunction
__call__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.ScalarFunction
- __ge__(*args, **kwargs)¶
Overloaded function.
__ge__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>
__ge__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.ScalarFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction
__getitem__(self: asset.VectorFunctions.ScalarFunction, arg0: slice) -> asset.VectorFunctions.VectorFunction
- __gt__(*args, **kwargs)¶
Overloaded function.
__gt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>
__gt__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> None
__init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.Element) -> None
__init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.PyScalarFunction) -> None
__init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ConstantScalar) -> None
__init__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.OptimalControl.InterpFunction_1) -> None
- __le__(*args, **kwargs)¶
Overloaded function.
__le__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>
__le__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __lt__(*args, **kwargs)¶
Overloaded function.
__lt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> ASSET::GenericConditional<-1>
__lt__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> ASSET::GenericConditional<-1>
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__mul__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction
__mul__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __pow__(*args, **kwargs)¶
Overloaded function.
__pow__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__pow__(self: asset.VectorFunctions.ScalarFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction
- __radd__(*args, **kwargs)¶
Overloaded function.
__radd__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__radd__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
- __rgt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) ASSET::GenericConditional<-1> ¶
- __rlt__(self: asset.VectorFunctions.ScalarFunction, arg0: float) ASSET::GenericConditional<-1> ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__rmul__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- __rsub__(*args, **kwargs)¶
Overloaded function.
__rsub__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__rsub__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
- __rtruediv__(self: asset.VectorFunctions.ScalarFunction, arg0: float) asset.VectorFunctions.ScalarFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
__sub__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__sub__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: float) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction
__truediv__(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
- adjointgradient(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.ScalarFunction ¶
- compute(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]]] ¶
- computeall(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
cwiseProduct(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
cwiseQuotient(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> asset.VectorFunctions.ScalarFunction
- eval(*args, **kwargs)¶
Overloaded function.
eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.ScalarFunction
eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction
eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.ScalarFunction
eval(self: asset.VectorFunctions.ScalarFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.ScalarFunction
eval(self: asset.VectorFunctions.ScalarFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
eval(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- input_domain(self: asset.VectorFunctions.ScalarFunction) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.VectorFunctions.ScalarFunction) bool ¶
- jacobian(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, n]] ¶
- name(self: asset.VectorFunctions.ScalarFunction) str ¶
- padded(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- pow(self: asset.VectorFunctions.ScalarFunction, arg0: float) asset.VectorFunctions.ScalarFunction ¶
- rpt(self: asset.VectorFunctions.ScalarFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.ScalarFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- tail(self: asset.VectorFunctions.ScalarFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- asset.VectorFunctions.ScalarRootFinder(*args, **kwargs)¶
Overloaded function.
ScalarRootFinder(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction, arg2: int, arg3: float) -> asset.VectorFunctions.ScalarFunction
ScalarRootFinder(arg0: asset.VectorFunctions.ScalarFunction, arg1: int, arg2: float) -> asset.VectorFunctions.ScalarFunction
- class asset.VectorFunctions.Segment¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.Segment) int ¶
- ORows(self: asset.VectorFunctions.Segment) int ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __array_ufunc__ = None¶
- __call__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.Segment, arg0: int) -> ASSET::Segment<-1, 1, -1>
__getitem__(self: asset.VectorFunctions.Segment, arg0: slice) -> asset.VectorFunctions.Segment
- __init__(self: asset.VectorFunctions.Segment, arg0: int, arg1: int, arg2: int) None ¶
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __neg__(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction ¶
- __radd__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __rsub__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.Segment, arg0: float) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- adjointgradient(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 1, -1> ¶
- compute(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cross(*args, **kwargs)¶
Overloaded function.
cross(self: asset.VectorFunctions.Segment, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
- cubed_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.Segment ¶
- head2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1> ¶
- head3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1> ¶
- head_2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1> ¶
- head_3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1> ¶
- input_domain(self: asset.VectorFunctions.Segment) numpy.ndarray[numpy.int32[2, n]] ¶
- inverse_cubed_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- inverse_four_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- inverse_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- inverse_squared_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- is_linear(self: asset.VectorFunctions.Segment) bool ¶
- jacobian(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.Segment) str ¶
- normalized(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction ¶
- normalized_power2(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction ¶
- normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
- normalized_power4(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction ¶
- normalized_power5(self: asset.VectorFunctions.Segment) asset.VectorFunctions.VectorFunction ¶
- padded(self: asset.VectorFunctions.Segment, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.VectorFunction ¶
- rpt(self: asset.VectorFunctions.Segment, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.Segment, arg0: int, arg1: int) asset.VectorFunctions.Segment ¶
- segment2(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 2, -1> ¶
- segment3(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 3, -1> ¶
- segment_2(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 2, -1> ¶
- segment_3(self: asset.VectorFunctions.Segment, arg0: int) ASSET::Segment<-1, 3, -1> ¶
- squared_norm(self: asset.VectorFunctions.Segment) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.Segment, arg0: int) asset.VectorFunctions.Segment ¶
- tail2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1> ¶
- tail3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1> ¶
- tail_2(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 2, -1> ¶
- tail_3(self: asset.VectorFunctions.Segment) ASSET::Segment<-1, 3, -1> ¶
- tolist(*args, **kwargs)¶
Overloaded function.
tolist(self: asset.VectorFunctions.Segment) -> list[ASSET::Segment<-1, 1, -1>]
tolist(self: asset.VectorFunctions.Segment, arg0: list[int]) -> list[ASSET::Segment<-1, 1, -1>]
tolist(self: asset.VectorFunctions.Segment, arg0: list[tuple[int, int]]) -> list[object]
- class asset.VectorFunctions.Segment2¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.Segment2) int ¶
- ORows(self: asset.VectorFunctions.Segment2) int ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __array_ufunc__ = None¶
- __call__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, 1]] ¶
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.Segment2, arg0: int) -> asset.VectorFunctions.Element
__getitem__(self: asset.VectorFunctions.Segment2, arg0: slice) -> asset.VectorFunctions.Segment
- __init__(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int, arg2: int) None ¶
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __neg__(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction ¶
- __radd__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) asset.VectorFunctions.VectorFunction ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __rsub__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) asset.VectorFunctions.VectorFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.Segment2, arg0: float) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- adjointgradient(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Element ¶
- compute(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, n]]] ¶
- computeall(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[2, 1]]) tuple[numpy.ndarray[numpy.float64[2, 1]], numpy.ndarray[numpy.float64[2, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cubed_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment2, arg0: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Segment ¶
- input_domain(self: asset.VectorFunctions.Segment2) numpy.ndarray[numpy.int32[2, n]] ¶
- inverse_cubed_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- inverse_four_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- inverse_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- inverse_squared_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- is_linear(self: asset.VectorFunctions.Segment2) bool ¶
- jacobian(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, n]] ¶
- name(self: asset.VectorFunctions.Segment2) str ¶
- normalized(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction ¶
- normalized_power2(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction ¶
- normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment2) -> asset.VectorFunctions.VectorFunction
- normalized_power4(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction ¶
- normalized_power5(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.VectorFunction ¶
- padded(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.VectorFunction ¶
- rpt(self: asset.VectorFunctions.Segment2, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.Segment2, arg0: int, arg1: int) asset.VectorFunctions.Segment ¶
- squared_norm(self: asset.VectorFunctions.Segment2) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.Segment2, arg0: int) asset.VectorFunctions.Segment ¶
- tolist(*args, **kwargs)¶
Overloaded function.
tolist(self: asset.VectorFunctions.Segment2) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Segment2, arg0: list[int]) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Segment2, arg0: list[tuple[int, int]]) -> list[object]
- class asset.VectorFunctions.Segment3¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.Segment3) int ¶
- ORows(self: asset.VectorFunctions.Segment3) int ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __array_ufunc__ = None¶
- __call__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, 1]] ¶
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.Segment3, arg0: int) -> asset.VectorFunctions.Element
__getitem__(self: asset.VectorFunctions.Segment3, arg0: slice) -> asset.VectorFunctions.Segment
- __init__(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int, arg2: int) None ¶
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __neg__(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction ¶
- __radd__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) asset.VectorFunctions.VectorFunction ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __rsub__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) asset.VectorFunctions.VectorFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.Segment3, arg0: float) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- adjointgradient(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Element ¶
- compute(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, n]]] ¶
- computeall(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cross(*args, **kwargs)¶
Overloaded function.
cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
- cubed_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment3, arg0: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.ScalarFunction
- head(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment ¶
- head_2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2 ¶
- input_domain(self: asset.VectorFunctions.Segment3) numpy.ndarray[numpy.int32[2, n]] ¶
- inverse_cubed_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- inverse_four_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- inverse_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- inverse_squared_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- is_linear(self: asset.VectorFunctions.Segment3) bool ¶
- jacobian(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, n]] ¶
- name(self: asset.VectorFunctions.Segment3) str ¶
- normalized(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction ¶
- normalized_power2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction ¶
- normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
- normalized_power4(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction ¶
- normalized_power5(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.VectorFunction ¶
- padded(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.VectorFunction ¶
- rpt(self: asset.VectorFunctions.Segment3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.Segment3, arg0: int, arg1: int) asset.VectorFunctions.Segment ¶
- segment2(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment2 ¶
- segment_2(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment2 ¶
- squared_norm(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.Segment3, arg0: int) asset.VectorFunctions.Segment ¶
- tail_2(self: asset.VectorFunctions.Segment3) asset.VectorFunctions.Segment2 ¶
- tolist(*args, **kwargs)¶
Overloaded function.
tolist(self: asset.VectorFunctions.Segment3) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Segment3, arg0: list[int]) -> list[asset.VectorFunctions.Element]
tolist(self: asset.VectorFunctions.Segment3, arg0: list[tuple[int, int]]) -> list[object]
- asset.VectorFunctions.Stack(*args, **kwargs)¶
Overloaded function.
Stack(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction
Stack(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.StackScalar(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.VectorFunction ¶
- asset.VectorFunctions.Sum(*args, **kwargs)¶
Overloaded function.
Sum(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction
Sum(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.SumElems(*args, **kwargs)¶
Overloaded function.
SumElems(arg0: list[asset.VectorFunctions.Element]) -> asset.VectorFunctions.ScalarFunction
SumElems(arg0: list[asset.VectorFunctions.Element], arg1: list[float]) -> asset.VectorFunctions.ScalarFunction
- asset.VectorFunctions.SumScalar(arg0: list[asset.VectorFunctions.ScalarFunction]) asset.VectorFunctions.ScalarFunction ¶
- class asset.VectorFunctions.VectorFunction¶
Bases:
pybind11_object
- IRows(self: asset.VectorFunctions.VectorFunction) int ¶
- ORows(self: asset.VectorFunctions.VectorFunction) int ¶
- SpeedTest(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- SuperTest(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- __add__(*args, **kwargs)¶
Overloaded function.
__add__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__add__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __array_ufunc__ = None¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
__call__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: float, *args) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction
- __getitem__(*args, **kwargs)¶
Overloaded function.
__getitem__(self: asset.VectorFunctions.VectorFunction, arg0: int) -> asset.VectorFunctions.ScalarFunction
__getitem__(self: asset.VectorFunctions.VectorFunction, arg0: slice) -> asset.VectorFunctions.VectorFunction
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Element) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Arguments) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment2) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.Segment3) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.PyVectorFunction) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.PyScalarFunction) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ConstantVector) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ConstantScalar) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.IOScaled) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_1) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_3) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.InterpFunction_6) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u_p.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_x_u_p.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6_3.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6_3.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_7_3.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_7_3.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_2_1.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_2_1.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_6.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_4.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.OptimalControl.ode_4.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.ode) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.integrator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.Kepler.KeplerPropagator) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.ModifiedToCartesian) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Astro.CartesianToClassic) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Extensions.cpp_cr3bp_ad) -> None
__init__(self: asset.VectorFunctions.VectorFunction, arg0: asset.Extensions.ModifiedDynamicsAD) -> None
- __module__ = 'asset.VectorFunctions'¶
- __mul__(*args, **kwargs)¶
Overloaded function.
__mul__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__mul__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __radd__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __rmul__(*args, **kwargs)¶
Overloaded function.
__rmul__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__rmul__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- __rsub__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) asset.VectorFunctions.VectorFunction ¶
- __sub__(*args, **kwargs)¶
Overloaded function.
__sub__(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
__sub__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- __truediv__(*args, **kwargs)¶
Overloaded function.
__truediv__(self: asset.VectorFunctions.VectorFunction, arg0: float) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
__truediv__(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- adjointgradient(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- apply(*args, **kwargs)¶
Overloaded function.
apply(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
apply(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
- coeff(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.ScalarFunction ¶
- compute(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- cross(*args, **kwargs)¶
Overloaded function.
cross(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
cross(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- cubed_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseProduct(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
cwiseQuotient(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- dot(*args, **kwargs)¶
Overloaded function.
dot(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.ScalarFunction
dot(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.ScalarFunction
- eval(*args, **kwargs)¶
Overloaded function.
eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 1, -1>) -> asset.VectorFunctions.VectorFunction
eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, -1, -1>) -> asset.VectorFunctions.VectorFunction
eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 2, -1>) -> asset.VectorFunctions.VectorFunction
eval(self: asset.VectorFunctions.VectorFunction, arg0: ASSET::Segment<-1, 3, -1>) -> asset.VectorFunctions.VectorFunction
eval(self: asset.VectorFunctions.VectorFunction, arg0: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
eval(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> asset.VectorFunctions.VectorFunction
- head(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- input_domain(self: asset.VectorFunctions.VectorFunction) numpy.ndarray[numpy.int32[2, n]] ¶
- inverse_cubed_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- inverse_four_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- inverse_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- inverse_squared_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- is_linear(self: asset.VectorFunctions.VectorFunction) bool ¶
- jacobian(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.VectorFunctions.VectorFunction) str ¶
- normalized(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction ¶
- normalized_power2(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction ¶
- normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> asset.VectorFunctions.VectorFunction
normalized_power3(self: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- normalized_power4(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction ¶
- normalized_power5(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.VectorFunction ¶
- padded(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- padded_lower(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- padded_upper(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- rpt(self: asset.VectorFunctions.VectorFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- segment(self: asset.VectorFunctions.VectorFunction, arg0: int, arg1: int) asset.VectorFunctions.VectorFunction ¶
- segment2(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- segment3(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- segment_2(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- segment_3(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- squared_norm(self: asset.VectorFunctions.VectorFunction) asset.VectorFunctions.ScalarFunction ¶
- tail(self: asset.VectorFunctions.VectorFunction, arg0: int) asset.VectorFunctions.VectorFunction ¶
- asset.VectorFunctions.abs(*args, **kwargs)¶
Overloaded function.
abs(arg0: asset.VectorFunctions.Element) -> object
abs(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arccos(*args, **kwargs)¶
Overloaded function.
arccos(arg0: asset.VectorFunctions.Element) -> object
arccos(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arccosh(*args, **kwargs)¶
Overloaded function.
arccosh(arg0: asset.VectorFunctions.Element) -> object
arccosh(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arcsin(*args, **kwargs)¶
Overloaded function.
arcsin(arg0: asset.VectorFunctions.Element) -> object
arcsin(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arcsinh(*args, **kwargs)¶
Overloaded function.
arcsinh(arg0: asset.VectorFunctions.Element) -> object
arcsinh(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arctan(*args, **kwargs)¶
Overloaded function.
arctan(arg0: asset.VectorFunctions.Element) -> object
arctan(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.arctan2(*args, **kwargs)¶
Overloaded function.
arctan2(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
arctan2(arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
arctan2(arg0: asset.VectorFunctions.Element, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
arctan2(arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.ScalarFunction
- asset.VectorFunctions.arctanh(*args, **kwargs)¶
Overloaded function.
arctanh(arg0: asset.VectorFunctions.Element) -> object
arctanh(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.cos(*args, **kwargs)¶
Overloaded function.
cos(arg0: asset.VectorFunctions.Element) -> object
cos(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.cosh(*args, **kwargs)¶
Overloaded function.
cosh(arg0: asset.VectorFunctions.Element) -> object
cosh(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.cross(*args, **kwargs)¶
Overloaded function.
cross(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cross(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cross(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object
cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment) -> object
cross(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object
cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object
cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object
cross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object
cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object
cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object
cross(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object
cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object
cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object
cross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.cubed_norm(*args, **kwargs)¶
Overloaded function.
cubed_norm(arg0: asset.VectorFunctions.Arguments) -> object
cubed_norm(arg0: asset.VectorFunctions.Segment) -> object
cubed_norm(arg0: asset.VectorFunctions.Segment2) -> object
cubed_norm(arg0: asset.VectorFunctions.Segment3) -> object
cubed_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.cwiseProduct(*args, **kwargs)¶
Overloaded function.
cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseProduct(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object
cwiseProduct(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object
cwiseProduct(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object
cwiseProduct(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object
cwiseProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object
cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object
cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object
cwiseProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.cwiseQuotient(*args, **kwargs)¶
Overloaded function.
cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
cwiseQuotient(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object
cwiseQuotient(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object
cwiseQuotient(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object
cwiseQuotient(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object
cwiseQuotient(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object
cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object
cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object
cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object
cwiseQuotient(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.divtest(*args, **kwargs)¶
Overloaded function.
divtest(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
divtest(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.dot(*args, **kwargs)¶
Overloaded function.
dot(arg0: asset.VectorFunctions.Segment2, arg1: numpy.ndarray[numpy.float64[2, 1]]) -> object
dot(arg0: asset.VectorFunctions.Segment3, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
dot(arg0: asset.VectorFunctions.Segment, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
dot(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> object
dot(arg0: numpy.ndarray[numpy.float64[2, 1]], arg1: asset.VectorFunctions.Segment2) -> object
dot(arg0: numpy.ndarray[numpy.float64[3, 1]], arg1: asset.VectorFunctions.Segment3) -> object
dot(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.Segment) -> object
dot(arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: asset.VectorFunctions.VectorFunction) -> object
dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment2) -> object
dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.Segment) -> object
dot(arg0: asset.VectorFunctions.Segment2, arg1: asset.VectorFunctions.VectorFunction) -> object
dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3) -> object
dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment) -> object
dot(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.VectorFunction) -> object
dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> object
dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment2) -> object
dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment3) -> object
dot(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> object
dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment2) -> object
dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> object
dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> object
dot(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.doublecross(*args, **kwargs)¶
Overloaded function.
doublecross(arg0: asset.VectorFunctions.Segment3, arg1: asset.VectorFunctions.Segment3, arg2: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
doublecross(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction, arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.exp(*args, **kwargs)¶
Overloaded function.
exp(arg0: asset.VectorFunctions.Element) -> object
exp(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.ifelse(*args, **kwargs)¶
Overloaded function.
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.ScalarFunction, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: float, arg2: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.ScalarFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.ScalarFunction, arg2: float) -> asset.VectorFunctions.ScalarFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: float, arg2: float) -> asset.VectorFunctions.ScalarFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.VectorFunction, arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: asset.VectorFunctions.VectorFunction, arg2: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
ifelse(arg0: ASSET::GenericConditional<-1>, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.inverse_cubed_norm(*args, **kwargs)¶
Overloaded function.
inverse_cubed_norm(arg0: asset.VectorFunctions.Arguments) -> object
inverse_cubed_norm(arg0: asset.VectorFunctions.Segment) -> object
inverse_cubed_norm(arg0: asset.VectorFunctions.Segment2) -> object
inverse_cubed_norm(arg0: asset.VectorFunctions.Segment3) -> object
inverse_cubed_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.inverse_four_norm(*args, **kwargs)¶
Overloaded function.
inverse_four_norm(arg0: asset.VectorFunctions.Arguments) -> object
inverse_four_norm(arg0: asset.VectorFunctions.Segment) -> object
inverse_four_norm(arg0: asset.VectorFunctions.Segment2) -> object
inverse_four_norm(arg0: asset.VectorFunctions.Segment3) -> object
inverse_four_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.inverse_norm(*args, **kwargs)¶
Overloaded function.
inverse_norm(arg0: asset.VectorFunctions.Arguments) -> object
inverse_norm(arg0: asset.VectorFunctions.Segment) -> object
inverse_norm(arg0: asset.VectorFunctions.Segment2) -> object
inverse_norm(arg0: asset.VectorFunctions.Segment3) -> object
inverse_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.inverse_squared_norm(*args, **kwargs)¶
Overloaded function.
inverse_squared_norm(arg0: asset.VectorFunctions.Arguments) -> object
inverse_squared_norm(arg0: asset.VectorFunctions.Segment) -> object
inverse_squared_norm(arg0: asset.VectorFunctions.Segment2) -> object
inverse_squared_norm(arg0: asset.VectorFunctions.Segment3) -> object
inverse_squared_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.log(*args, **kwargs)¶
Overloaded function.
log(arg0: asset.VectorFunctions.Element) -> object
log(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.matmul(*args, **kwargs)¶
Overloaded function.
matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix
matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix
matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
matmul(arg0: asset.VectorFunctions.ColMatrix, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.ColMatrix) -> asset.VectorFunctions.ColMatrix
matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.RowMatrix) -> asset.VectorFunctions.ColMatrix
matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
matmul(arg0: asset.VectorFunctions.RowMatrix, arg1: numpy.ndarray[numpy.float64[m, 1]]) -> asset.VectorFunctions.VectorFunction
matmul(arg0: numpy.ndarray[numpy.float64[2, 2]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
matmul(arg0: numpy.ndarray[numpy.float64[3, 3]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
matmul(arg0: numpy.ndarray[numpy.float64[m, n]], arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.norm(*args, **kwargs)¶
Overloaded function.
norm(arg0: asset.VectorFunctions.Arguments) -> object
norm(arg0: asset.VectorFunctions.Segment) -> object
norm(arg0: asset.VectorFunctions.Segment2) -> object
norm(arg0: asset.VectorFunctions.Segment3) -> object
norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalize(*args, **kwargs)¶
Overloaded function.
normalize(arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
normalize(arg0: asset.VectorFunctions.Arguments) -> object
normalize(arg0: asset.VectorFunctions.Segment) -> object
normalize(arg0: asset.VectorFunctions.Segment2) -> object
normalize(arg0: asset.VectorFunctions.Segment3) -> object
normalize(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalized(*args, **kwargs)¶
Overloaded function.
normalized(arg0: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
normalized(arg0: asset.VectorFunctions.Arguments) -> object
normalized(arg0: asset.VectorFunctions.Segment) -> object
normalized(arg0: asset.VectorFunctions.Segment2) -> object
normalized(arg0: asset.VectorFunctions.Segment3) -> object
normalized(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalized_power2(*args, **kwargs)¶
Overloaded function.
normalized_power2(arg0: asset.VectorFunctions.Arguments) -> object
normalized_power2(arg0: asset.VectorFunctions.Segment) -> object
normalized_power2(arg0: asset.VectorFunctions.Segment2) -> object
normalized_power2(arg0: asset.VectorFunctions.Segment3) -> object
normalized_power2(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalized_power3(*args, **kwargs)¶
Overloaded function.
normalized_power3(arg0: asset.VectorFunctions.Arguments) -> object
normalized_power3(arg0: asset.VectorFunctions.Segment) -> object
normalized_power3(arg0: asset.VectorFunctions.Segment2) -> object
normalized_power3(arg0: asset.VectorFunctions.Segment3) -> object
normalized_power3(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalized_power4(*args, **kwargs)¶
Overloaded function.
normalized_power4(arg0: asset.VectorFunctions.Arguments) -> object
normalized_power4(arg0: asset.VectorFunctions.Segment) -> object
normalized_power4(arg0: asset.VectorFunctions.Segment2) -> object
normalized_power4(arg0: asset.VectorFunctions.Segment3) -> object
normalized_power4(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.normalized_power5(*args, **kwargs)¶
Overloaded function.
normalized_power5(arg0: asset.VectorFunctions.Arguments) -> object
normalized_power5(arg0: asset.VectorFunctions.Segment) -> object
normalized_power5(arg0: asset.VectorFunctions.Segment2) -> object
normalized_power5(arg0: asset.VectorFunctions.Segment3) -> object
normalized_power5(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.pow(*args, **kwargs)¶
Overloaded function.
pow(arg0: asset.VectorFunctions.Element) -> object
pow(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.quatProduct(*args, **kwargs)¶
Overloaded function.
quatProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
quatProduct(arg0: asset.VectorFunctions.Segment, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
quatProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
quatProduct(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.quatRotate(*args, **kwargs)¶
Overloaded function.
quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.VectorFunction) -> asset.VectorFunctions.VectorFunction
quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment3) -> asset.VectorFunctions.VectorFunction
quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: asset.VectorFunctions.Segment) -> asset.VectorFunctions.VectorFunction
quatRotate(arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.float64[3, 1]]) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.sign(*args, **kwargs)¶
Overloaded function.
sign(arg0: asset.VectorFunctions.Element) -> object
sign(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.sin(*args, **kwargs)¶
Overloaded function.
sin(arg0: asset.VectorFunctions.Element) -> object
sin(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.sinh(*args, **kwargs)¶
Overloaded function.
sinh(arg0: asset.VectorFunctions.Element) -> object
sinh(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.sqrt(*args, **kwargs)¶
Overloaded function.
sqrt(arg0: asset.VectorFunctions.Element) -> object
sqrt(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.squared(*args, **kwargs)¶
Overloaded function.
squared(arg0: asset.VectorFunctions.Element) -> object
squared(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.squared_norm(*args, **kwargs)¶
Overloaded function.
squared_norm(arg0: asset.VectorFunctions.Arguments) -> object
squared_norm(arg0: asset.VectorFunctions.Segment) -> object
squared_norm(arg0: asset.VectorFunctions.Segment2) -> object
squared_norm(arg0: asset.VectorFunctions.Segment3) -> object
squared_norm(arg0: asset.VectorFunctions.VectorFunction) -> object
- asset.VectorFunctions.stack(*args, **kwargs)¶
Overloaded function.
stack(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.VectorFunction
stack(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction
stack(arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction
stack(arg0: float, *args) -> asset.VectorFunctions.VectorFunction
stack(arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.stack_scalar(*args, **kwargs)¶
Overloaded function.
- asset.VectorFunctions.sum(*args, **kwargs)¶
Overloaded function.
sum(arg0: list[asset.VectorFunctions.ScalarFunction]) -> asset.VectorFunctions.ScalarFunction
sum(arg0: list[asset.VectorFunctions.VectorFunction]) -> asset.VectorFunctions.VectorFunction
sum(arg0: asset.VectorFunctions.ScalarFunction, *args) -> asset.VectorFunctions.ScalarFunction
sum(arg0: float, *args) -> asset.VectorFunctions.ScalarFunction
sum(arg0: asset.VectorFunctions.VectorFunction, *args) -> asset.VectorFunctions.VectorFunction
sum(arg0: numpy.ndarray[numpy.float64[m, 1]], *args) -> asset.VectorFunctions.VectorFunction
- asset.VectorFunctions.tan(*args, **kwargs)¶
Overloaded function.
tan(arg0: asset.VectorFunctions.Element) -> object
tan(arg0: asset.VectorFunctions.ScalarFunction) -> object
- asset.VectorFunctions.tanh(*args, **kwargs)¶
Overloaded function.
tanh(arg0: asset.VectorFunctions.Element) -> object
tanh(arg0: asset.VectorFunctions.ScalarFunction) -> object