Optimal Control¶
SubModule Containing Optimal Control ODEs, Phases, and Utilities
- class asset.OptimalControl.ControlModes¶
Bases:
pybind11_object
Members:
HighestOrderSpline
FirstOrderSpline
NoSpline
BlockConstant
- BlockConstant = <ControlModes.BlockConstant: 3>¶
- FirstOrderSpline = <ControlModes.FirstOrderSpline: 1>¶
- HighestOrderSpline = <ControlModes.HighestOrderSpline: 0>¶
- NoSpline = <ControlModes.NoSpline: 2>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.ControlModes) int ¶
- __init__(self: asset.OptimalControl.ControlModes, value: int) None ¶
- __int__(self: asset.OptimalControl.ControlModes) int ¶
- __members__ = {'BlockConstant': <ControlModes.BlockConstant: 3>, 'FirstOrderSpline': <ControlModes.FirstOrderSpline: 1>, 'HighestOrderSpline': <ControlModes.HighestOrderSpline: 0>, 'NoSpline': <ControlModes.NoSpline: 2>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.ControlModes, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- class asset.OptimalControl.FiniteDiffTable¶
Bases:
pybind11_object
- __init__(self: asset.OptimalControl.FiniteDiffTable, arg0: int, arg1: list[numpy.ndarray[numpy.float64[m, 1]]]) None ¶
- __module__ = 'asset.OptimalControl'¶
- all_derivs(self: asset.OptimalControl.FiniteDiffTable, arg0: int, arg1: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- deriv(self: asset.OptimalControl.FiniteDiffTable, arg0: int, arg1: int, arg2: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- class asset.OptimalControl.IntegralModes¶
Bases:
pybind11_object
Members:
BaseIntegral
TrapIntegral
- BaseIntegral = <IntegralModes.BaseIntegral: 0>¶
- TrapIntegral = <IntegralModes.TrapIntegral: 2>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.IntegralModes) int ¶
- __init__(self: asset.OptimalControl.IntegralModes, value: int) None ¶
- __int__(self: asset.OptimalControl.IntegralModes) int ¶
- __members__ = {'BaseIntegral': <IntegralModes.BaseIntegral: 0>, 'TrapIntegral': <IntegralModes.TrapIntegral: 2>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.IntegralModes, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- class asset.OptimalControl.InterpFunction¶
Bases:
pybind11_object
- IRows(self: asset.OptimalControl.InterpFunction) int ¶
- ORows(self: asset.OptimalControl.InterpFunction) int ¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
__call__(self: asset.OptimalControl.InterpFunction, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.OptimalControl.InterpFunction, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
- __init__(self: asset.OptimalControl.InterpFunction, arg0: asset.OptimalControl.LGLInterpTable, arg1: numpy.ndarray[numpy.int32[m, 1]]) None ¶
- __module__ = 'asset.OptimalControl'¶
- adjointgradient(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- adjointhessian(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- computeall(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]]] ¶
- input_domain(self: asset.OptimalControl.InterpFunction) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.OptimalControl.InterpFunction) bool ¶
- jacobian(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- name(self: asset.OptimalControl.InterpFunction) str ¶
- rpt(self: asset.OptimalControl.InterpFunction, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.OptimalControl.InterpFunction_1¶
Bases:
pybind11_object
- IRows(self: asset.OptimalControl.InterpFunction_1) int ¶
- ORows(self: asset.OptimalControl.InterpFunction_1) int ¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> numpy.ndarray[numpy.float64[1, 1]]
__call__(self: asset.OptimalControl.InterpFunction_1, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.OptimalControl.InterpFunction_1, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
- __init__(self: asset.OptimalControl.InterpFunction_1, arg0: asset.OptimalControl.LGLInterpTable) None ¶
- __module__ = 'asset.OptimalControl'¶
- adjointgradient(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- adjointhessian(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute_jacobian(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]]] ¶
- computeall(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]]] ¶
- input_domain(self: asset.OptimalControl.InterpFunction_1) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.OptimalControl.InterpFunction_1) bool ¶
- jacobian(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- name(self: asset.OptimalControl.InterpFunction_1) str ¶
- rpt(self: asset.OptimalControl.InterpFunction_1, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.OptimalControl.InterpFunction_3¶
Bases:
pybind11_object
- IRows(self: asset.OptimalControl.InterpFunction_3) int ¶
- ORows(self: asset.OptimalControl.InterpFunction_3) int ¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> numpy.ndarray[numpy.float64[3, 1]]
__call__(self: asset.OptimalControl.InterpFunction_3, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.OptimalControl.InterpFunction_3, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
- __init__(self: asset.OptimalControl.InterpFunction_3, arg0: asset.OptimalControl.LGLInterpTable) None ¶
- __module__ = 'asset.OptimalControl'¶
- adjointgradient(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- adjointhessian(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[3, 1]] ¶
- compute_jacobian(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 1]]] ¶
- computeall(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[3, 1]]) tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]]] ¶
- input_domain(self: asset.OptimalControl.InterpFunction_3) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.OptimalControl.InterpFunction_3) bool ¶
- jacobian(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[3, 1]] ¶
- name(self: asset.OptimalControl.InterpFunction_3) str ¶
- rpt(self: asset.OptimalControl.InterpFunction_3, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.OptimalControl.InterpFunction_6¶
Bases:
pybind11_object
- IRows(self: asset.OptimalControl.InterpFunction_6) int ¶
- ORows(self: asset.OptimalControl.InterpFunction_6) int ¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]]) -> numpy.ndarray[numpy.float64[6, 1]]
__call__(self: asset.OptimalControl.InterpFunction_6, arg0: asset.VectorFunctions.ScalarFunction) -> asset.VectorFunctions.VectorFunction
__call__(self: asset.OptimalControl.InterpFunction_6, arg0: asset.VectorFunctions.Element) -> asset.VectorFunctions.VectorFunction
- __init__(self: asset.OptimalControl.InterpFunction_6, arg0: asset.OptimalControl.LGLInterpTable) None ¶
- __module__ = 'asset.OptimalControl'¶
- adjointgradient(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[6, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- adjointhessian(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[6, 1]]) numpy.ndarray[numpy.float64[1, 1]] ¶
- compute(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[6, 1]] ¶
- compute_jacobian(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]]) tuple[numpy.ndarray[numpy.float64[6, 1]], numpy.ndarray[numpy.float64[6, 1]]] ¶
- computeall(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]], arg1: numpy.ndarray[numpy.float64[6, 1]]) tuple[numpy.ndarray[numpy.float64[6, 1]], numpy.ndarray[numpy.float64[6, 1]], numpy.ndarray[numpy.float64[1, 1]], numpy.ndarray[numpy.float64[1, 1]]] ¶
- input_domain(self: asset.OptimalControl.InterpFunction_6) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.OptimalControl.InterpFunction_6) bool ¶
- jacobian(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[1, 1]]) numpy.ndarray[numpy.float64[6, 1]] ¶
- name(self: asset.OptimalControl.InterpFunction_6) str ¶
- rpt(self: asset.OptimalControl.InterpFunction_6, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.OptimalControl.LGLInterpTable¶
Bases:
pybind11_object
- ErrorIntegral(self: asset.OptimalControl.LGLInterpTable, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- InterpNonDim(self: asset.OptimalControl.LGLInterpTable, arg0: int, arg1: float, arg2: float) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- InterpRange(self: asset.OptimalControl.LGLInterpTable, arg0: int, arg1: float, arg2: float) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- InterpWholeRange(self: asset.OptimalControl.LGLInterpTable, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- Interpolate(self: asset.OptimalControl.LGLInterpTable, arg0: float) numpy.ndarray[numpy.float64[m, 1]] ¶
- InterpolateDeriv(self: asset.OptimalControl.LGLInterpTable, arg0: float) numpy.ndarray[numpy.float64[m, 2]] ¶
- NewErrorIntegral(self: asset.OptimalControl.LGLInterpTable) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- property T0¶
- property TF¶
- __call__(self: asset.OptimalControl.LGLInterpTable, arg0: float) numpy.ndarray[numpy.float64[m, 1]] ¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: asset.OptimalControl.TranscriptionModes, arg4: list[numpy.ndarray[numpy.float64[m, 1]]], arg5: int) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: str, arg4: list[numpy.ndarray[numpy.float64[m, 1]]], arg5: int) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: int, arg4: str, arg5: list[numpy.ndarray[numpy.float64[m, 1]]], arg6: int) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: int, arg4: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: int, arg1: list[numpy.ndarray[numpy.float64[m, 1]]], arg2: int) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: int, arg3: asset.OptimalControl.TranscriptionModes) -> None
__init__(self: asset.OptimalControl.LGLInterpTable, arg0: int, arg1: int, arg2: asset.OptimalControl.TranscriptionModes) -> None
- __module__ = 'asset.OptimalControl'¶
- getTablePtr(self: asset.OptimalControl.LGLInterpTable) asset.OptimalControl.LGLInterpTable ¶
- loadEvenData(self: asset.OptimalControl.LGLInterpTable, arg0: list[numpy.ndarray[numpy.float64[m, 1]]]) None ¶
- loadUnevenData(self: asset.OptimalControl.LGLInterpTable, arg0: int, arg1: list[numpy.ndarray[numpy.float64[m, 1]]]) None ¶
- makePeriodic(self: asset.OptimalControl.LGLInterpTable) None ¶
- class asset.OptimalControl.LinkConstraint¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.LinkConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.LinkConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> None
__init__(self: asset.OptimalControl.LinkConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> None
- __module__ = 'asset.OptimalControl'¶
- class asset.OptimalControl.LinkFlags¶
Bases:
pybind11_object
Members:
BackToFront
BackToBack
FrontToBack
ParamsToParams
LinkParams
FrontToFront
PathToPath
BackTwoToTwoFront
FrontTwoToTwoBack
- BackToBack = <LinkFlags.BackToBack: 3>¶
- BackToFront = <LinkFlags.BackToFront: 0>¶
- BackTwoToTwoFront = <LinkFlags.BackTwoToTwoFront: 6>¶
- FrontToBack = <LinkFlags.FrontToBack: 1>¶
- FrontToFront = <LinkFlags.FrontToFront: 2>¶
- FrontTwoToTwoBack = <LinkFlags.FrontTwoToTwoBack: 7>¶
- LinkParams = <LinkFlags.LinkParams: 5>¶
- ParamsToParams = <LinkFlags.ParamsToParams: 4>¶
- PathToPath = <LinkFlags.PathToPath: 8>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.LinkFlags) int ¶
- __init__(self: asset.OptimalControl.LinkFlags, value: int) None ¶
- __int__(self: asset.OptimalControl.LinkFlags) int ¶
- __members__ = {'BackToBack': <LinkFlags.BackToBack: 3>, 'BackToFront': <LinkFlags.BackToFront: 0>, 'BackTwoToTwoFront': <LinkFlags.BackTwoToTwoFront: 6>, 'FrontToBack': <LinkFlags.FrontToBack: 1>, 'FrontToFront': <LinkFlags.FrontToFront: 2>, 'FrontTwoToTwoBack': <LinkFlags.FrontTwoToTwoBack: 7>, 'LinkParams': <LinkFlags.LinkParams: 5>, 'ParamsToParams': <LinkFlags.ParamsToParams: 4>, 'PathToPath': <LinkFlags.PathToPath: 8>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.LinkFlags, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- class asset.OptimalControl.LinkObjective¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.LinkObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.LinkObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> None
__init__(self: asset.OptimalControl.LinkObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> None
- __module__ = 'asset.OptimalControl'¶
- class asset.OptimalControl.MeshIterateInfo¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
- __module__ = 'asset.OptimalControl'¶
- property avg_error¶
- property converged¶
- property distintegral¶
- property distribution¶
- property error¶
- property max_error¶
- property numsegs¶
- property times¶
- class asset.OptimalControl.ODEArguments¶
Bases:
Arguments
- IRows(self: asset.OptimalControl.ODEArguments) int ¶
- ORows(self: asset.OptimalControl.ODEArguments) int ¶
- PVar(self: asset.OptimalControl.ODEArguments, arg0: int) asset.VectorFunctions.Element ¶
- UVar(self: asset.OptimalControl.ODEArguments, arg0: int) asset.VectorFunctions.Element ¶
- XVar(self: asset.OptimalControl.ODEArguments, arg0: int) asset.VectorFunctions.Element ¶
- __call__(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.ODEArguments, arg0: int, arg1: int, arg2: int) -> None
__init__(self: asset.OptimalControl.ODEArguments, arg0: int, arg1: int) -> None
__init__(self: asset.OptimalControl.ODEArguments, arg0: int) -> None
- __module__ = 'asset.OptimalControl'¶
- adjointgradient(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- adjointhessian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- compute(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- compute_jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- computeall(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- input_domain(self: asset.OptimalControl.ODEArguments) numpy.ndarray[numpy.int32[2, n]] ¶
- is_linear(self: asset.OptimalControl.ODEArguments) bool ¶
- jacobian(self: asset.VectorFunctions.Arguments, arg0: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- name(self: asset.OptimalControl.ODEArguments) str ¶
- rpt(self: asset.OptimalControl.ODEArguments, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) None ¶
- class asset.OptimalControl.OptimalControlProblem¶
Bases:
OptimizationProblemBase
- property AdaptiveMesh¶
- property AutoScaling¶
- property MaxMeshIters¶
- property MeshAbortFlag¶
- property MeshConverged¶
- Phase(self: asset.OptimalControl.OptimalControlProblem, arg0: int) asset.OptimalControl.PhaseInterface ¶
Gets a reference to a specific phase associated with this OCP. Allows negative indexing.
- Parameters:
arg0 (int) – Index of the desired phase object.
- Returns:
A reference to the desired Phase object:rtype: PhaseInterface
- property Phases¶
A list of references to all phases associated with this OCP.
- Type:
list
- property PrintMeshInfo¶
- property SolveOnlyFirst¶
- property SyncObjectiveScales¶
- __init__(self: asset.OptimalControl.OptimalControlProblem) None ¶
- __module__ = 'asset.OptimalControl'¶
- addDirectLinkEqualCon(*args, **kwargs)¶
Overloaded function.
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], v0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], v1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.LinkFlags, arg1: int, arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: int, arg4: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a direct equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkFlags) – LinkFlag defining what type of link constraint
arg1 (int) – Index of phase for the front of link equality constraint
arg2 (Vector<int>) – Vector of indices of front phase state variables to apply link constraint to
arg3 (int) – Index of end phase for link equality constraint
arg2 – Vector of indices of end phase state variables to apply link constraint to
- Returns:
Index of the direct equality link constraint in the optimal control problem
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: asset.OptimalControl.PhaseRegionFlags, arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: int, arg5: asset.OptimalControl.PhaseRegionFlags, arg6: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a direct equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkFlags) – LinkFlag defining what type of link constraint
arg1 (int) – Index of phase for the front of link equality constraint
arg2 (Vector<int>) – Vector of indices of front phase state variables to apply link constraint to
arg3 (int) – Index of end phase for link equality constraint
arg2 – Vector of indices of end phase state variables to apply link constraint to
- Returns:
Index of the direct equality link constraint in the optimal control problem
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.PhaseInterface, arg2: asset.OptimalControl.PhaseRegionFlags, arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: asset.OptimalControl.PhaseInterface, arg5: asset.OptimalControl.PhaseRegionFlags, arg6: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a direct equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkFlags) – LinkFlag defining what type of link constraint
arg1 (int) – Index of phase for the front of link equality constraint
arg2 (Vector<int>) – Vector of indices of front phase state variables to apply link constraint to
arg3 (int) – Index of end phase for link equality constraint
arg2 – Vector of indices of end phase state variables to apply link constraint to
- Returns:
Index of the direct equality link constraint in the optimal control problem
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: int, arg2: str, arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: int, arg5: str, arg6: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a direct equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkFlags) – LinkFlag defining what type of link constraint
arg1 (int) – Index of phase for the front of link equality constraint
arg2 (Vector<int>) – Vector of indices of front phase state variables to apply link constraint to
arg3 (int) – Index of end phase for link equality constraint
arg2 – Vector of indices of end phase state variables to apply link constraint to
- Returns:
Index of the direct equality link constraint in the optimal control problem
addDirectLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.PhaseInterface, arg2: str, arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: asset.OptimalControl.PhaseInterface, arg5: str, arg6: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a direct equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkFlags) – LinkFlag defining what type of link constraint
arg1 (int) – Index of phase for the front of link equality constraint
arg2 (Vector<int>) – Vector of indices of front phase state variables to apply link constraint to
arg3 (int) – Index of end phase for link equality constraint
arg2 – Vector of indices of end phase state variables to apply link constraint to
- Returns:
Index of the direct equality link constraint in the optimal control problem
- addForwardLinkEqualCon(*args, **kwargs)¶
Overloaded function.
addForwardLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], vars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> list[int]
addForwardLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: int, arg1: int, arg2: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a forward PhaseRegion Flag equality link constraint to the optimal control problem
- Parameters:
arg0 (int) – Index of phase for the front of link equality constraint
arg1 (int) – Index of end phase for link equality constraint
arg2 (Vector<int>) – Vector of indices of state variables to apply link constraint to
- Returns:
Index of the forward equality link constraint in the optimal control problem
addForwardLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.PhaseInterface, arg1: asset.OptimalControl.PhaseInterface, arg2: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a forward PhaseRegion Flag equality link constraint to the optimal control problem
- Parameters:
arg0 (int) – Index of phase for the front of link equality constraint
arg1 (int) – Index of end phase for link equality constraint
arg2 (Vector<int>) – Vector of indices of state variables to apply link constraint to
- Returns:
Index of the forward equality link constraint in the optimal control problem
- addLinkEqualCon(*args, **kwargs)¶
Overloaded function.
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phasepack: list[tuple[Union[int, asset.OptimalControl.PhaseInterface, str], Union[asset.OptimalControl.PhaseRegionFlags, str], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]]]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], v0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], v1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.LinkConstraint) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Predefined LinkConstraint object
- Returns:
Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[str], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[str], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
addLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an equality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Vector of Predefined LinkConstraint object
arg1 – Vector of PhaseRegionFlags
type arg1: PhaseRegionFlags :param arg2: Vector of phases to link. Must be same length as arg1 :param arg3: Vector of indices of state variables to link. Must be same length as arg1 :param arg4: Vector of link indices to perform phase linking. Must be same length as arg1 :returns: Index of the equality link constraint in the optimal control problem
- addLinkInequalCon(*args, **kwargs)¶
Overloaded function.
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phasepack: list[tuple[Union[int, asset.OptimalControl.PhaseInterface, str], Union[asset.OptimalControl.PhaseRegionFlags, str], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]]]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], v0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], v1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.LinkConstraint) -> int
Adds a inequality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Fully formed LinkConstraint object
- Returns:
Index of the inequality link constraint in the optimal control problem
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[str], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[str], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a inequality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Fully formed LinkConstraint object
- Returns:
Index of the inequality link constraint in the optimal control problem
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a inequality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Fully formed LinkConstraint object
- Returns:
Index of the inequality link constraint in the optimal control problem
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a inequality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Fully formed LinkConstraint object
- Returns:
Index of the inequality link constraint in the optimal control problem
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a inequality link constraint to the optimal control problem
- Parameters:
arg0 (LinkConstraint) – Fully formed LinkConstraint object
- Returns:
Index of the inequality link constraint in the optimal control problem
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
- addLinkObjective(*args, **kwargs)¶
Overloaded function.
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.ScalarFunction, phasepack: list[tuple[Union[int, asset.OptimalControl.PhaseInterface, str], Union[asset.OptimalControl.PhaseRegionFlags, str], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]]]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.ScalarFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], XtUVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.ScalarFunction, phase0: Union[int, asset.OptimalControl.PhaseInterface, str], reg0: Union[asset.OptimalControl.PhaseRegionFlags, str], v0: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], phase1: Union[int, asset.OptimalControl.PhaseInterface, str], reg1: Union[asset.OptimalControl.PhaseRegionFlags, str], v1: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], linkparams: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]] = array([], dtype=int32), AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.LinkObjective) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: list[str], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: list[str], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]], arg5: list[numpy.ndarray[numpy.int32[m, 1]]], arg6: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.LinkFlags, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: str, arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: str, arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[numpy.ndarray[numpy.int32[m, 1]]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
addLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.uint32[m, 1]], arg2: list[list[asset.OptimalControl.PhaseInterface]], arg3: list[numpy.ndarray[numpy.int32[m, 1]]], arg4: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds a link objective to the optimal control problem
- Parameters:
arg0 (LinkObjective) – Fully formed LinkObjective object
- Returns:
Index of the link objective in the optimal control problem
- addLinkParamEqualCon(*args, **kwargs)¶
Overloaded function.
addLinkParamEqualCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, LinkParms: list[numpy.ndarray[numpy.int32[m, 1]]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamEqualCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, LinkParms: numpy.ndarray[numpy.int32[m, 1]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds an equality parameter link constraint to the optimal control problem with different link parameter indices
- Parameters:
arg0 – VectorFunctional defining link parameter constraint
arg1 – Vector of vectors link parameter indices that are inputs to arg1
- Returns:
Index of equality parameter link constraint in the optimal control problem
addLinkParamEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an equality parameter link constraint to the optimal control problem that shares the same vector of indices for the link parameter constraint
- Parameters:
arg0 – VectorFunctional defining link parameter constraint
arg1 – Vector of link parameter indices that are inputs to arg1
- Returns:
Index of equality parameter link constraint in the optimal control problem
- addLinkParamInequalCon(*args, **kwargs)¶
Overloaded function.
addLinkParamInequalCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, LinkParms: list[numpy.ndarray[numpy.int32[m, 1]]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamInequalCon(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.VectorFunction, LinkParms: numpy.ndarray[numpy.int32[m, 1]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds an inequality parameter link constraint to the optimal control problem with different link parameter indices
- Parameters:
arg0 – VectorFunctional defining link parameter constraint
arg1 – Vector of vectors link parameter indices that are inputs to arg1
- Returns:
Index of equality parameter link constraint in the optimal control problem
addLinkParamInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.VectorFunction, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds an inequality parameter link constraint to the optimal control problem that shares the same vector of indices for the link parameter constraint
- Parameters:
arg0 – VectorFunctional defining link parameter constraint
arg1 – Vector of link parameter indices that are inputs to arg1
- Returns:
Index of equality parameter link constraint in the optimal control problem
- addLinkParamObjective(*args, **kwargs)¶
Overloaded function.
addLinkParamObjective(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.ScalarFunction, LinkParms: list[numpy.ndarray[numpy.int32[m, 1]]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamObjective(self: asset.OptimalControl.OptimalControlProblem, func: asset.VectorFunctions.ScalarFunction, LinkParms: numpy.ndarray[numpy.int32[m, 1]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLinkParamObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: list[numpy.ndarray[numpy.int32[m, 1]]]) -> int
Adds a parameter link objective(s) to the optimal control problem with different link parameter indices
- Parameters:
arg0 – ScalarFunctional defining link parameter objectives
arg1 – Vector of vectors of link parameter indices that are inputs to arg1
- Returns:
Index of link parameter objective in the optimal control problem
addLinkParamObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.VectorFunctions.ScalarFunction, arg1: numpy.ndarray[numpy.int32[m, 1]]) -> int
Adds a parameter link objective(s) to the optimal control problem that shares the same vector of indices for the link parameter constraint
- Parameters:
arg0 – ScalarFunctional defining link parameter objectives
arg1 – Vector of link parameter indices that are inputs to arg1
- Returns:
Index of link parameter objective in the optimal control problem
- addLinkParamVgroup(*args, **kwargs)¶
Overloaded function.
addLinkParamVgroup(self: asset.OptimalControl.OptimalControlProblem, arg0: numpy.ndarray[numpy.int32[m, 1]], arg1: str) -> None
addLinkParamVgroup(self: asset.OptimalControl.OptimalControlProblem, arg0: int, arg1: str) -> None
- addLinkParamVgroups(self: asset.OptimalControl.OptimalControlProblem, arg0: dict[str, numpy.ndarray[numpy.int32[m, 1]]]) None ¶
- addParamLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, phase0: int | asset.OptimalControl.PhaseInterface | str, phase1: int | asset.OptimalControl.PhaseInterface | str, reg0: asset.OptimalControl.PhaseRegionFlags | str, vars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') list[int] ¶
- addPhase(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.PhaseInterface) int ¶
Add a phase to this OCP.
- Parameters:
arg0 (PhaseInterface) – The phase object you want to add
- Returns:
The index of the newly added phase
- Return type:
int
- addPhases(self: asset.OptimalControl.OptimalControlProblem, arg0: list[asset.OptimalControl.PhaseInterface]) list[int] ¶
- getPhaseNum(self: asset.OptimalControl.OptimalControlProblem, arg0: asset.OptimalControl.PhaseInterface) int ¶
- removeLinkEqualCon(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
Discard the specified link equality constraint.
- Parameters:
arg0 (int) – The index of the link equality constraint you are removing. Allows negative indexing.
- Return type:
void
- removeLinkInequalCon(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
Discard the specified link equality constraint.
- Parameters:
arg0 (int) – The index of the link equality constraint you are removing. Allows negative indexing.
- Return type:
void
- removeLinkObjective(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
Discard the specified link objective.
- Parameters:
arg0 (int) – The index of the link objective you are removing. Allows negative indexing.
- Return type:
void
- removePhase(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
Remove a phase from this OCP.
- Parameters:
arg0 (int) – Index of the phase you want to remove
- Return type:
void
- returnLinkEqualConLmults(self: asset.OptimalControl.OptimalControlProblem, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnLinkEqualConScales(self: asset.OptimalControl.OptimalControlProblem, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnLinkEqualConVals(self: asset.OptimalControl.OptimalControlProblem, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnLinkInequalConLmults(self: asset.OptimalControl.OptimalControlProblem, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnLinkInequalConScales(self: asset.OptimalControl.OptimalControlProblem, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnLinkInequalConVals(self: asset.OptimalControl.OptimalControlProblem, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnLinkObjectiveScales(self: asset.OptimalControl.OptimalControlProblem, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnLinkParams(self: asset.OptimalControl.OptimalControlProblem) numpy.ndarray[numpy.float64[m, 1]] ¶
Get the link parameters for this OCP.
- Returns:
A numpy array of the previously specified link parameters.
- setAdaptiveMesh(self: asset.OptimalControl.OptimalControlProblem, AdaptiveMesh: bool = True, ApplyToPhases: bool = True) None ¶
- setAutoScaling(self: asset.OptimalControl.OptimalControlProblem, AutoScaling: bool = True, ApplyToPhases: bool = True) None ¶
- setLinkParamVgroups(self: asset.OptimalControl.OptimalControlProblem, arg0: dict[str, numpy.ndarray[numpy.int32[m, 1]]]) None ¶
- setLinkParams(*args, **kwargs)¶
Overloaded function.
setLinkParams(self: asset.OptimalControl.OptimalControlProblem, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> None
setLinkParams(self: asset.OptimalControl.OptimalControlProblem, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> None
Set the number and initial values of the OCP’s link parameters.
- Parameters:
arg0 – Numpy array of link parameters
- Return type:
void
- setMaxMeshIters(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
- setMaxSegments(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
- setMeshErrFactor(self: asset.OptimalControl.OptimalControlProblem, arg0: float) None ¶
- setMeshErrorCriteria(self: asset.OptimalControl.OptimalControlProblem, arg0: str) None ¶
- setMeshErrorEstimator(self: asset.OptimalControl.OptimalControlProblem, arg0: str) None ¶
- setMeshIncFactor(self: asset.OptimalControl.OptimalControlProblem, arg0: float) None ¶
- setMeshRedFactor(self: asset.OptimalControl.OptimalControlProblem, arg0: float) None ¶
- setMeshTol(self: asset.OptimalControl.OptimalControlProblem, arg0: float) None ¶
- setMinSegments(self: asset.OptimalControl.OptimalControlProblem, arg0: int) None ¶
- transcribe(self: asset.OptimalControl.OptimalControlProblem, arg0: bool, arg1: bool) None ¶
Given all phases, links, objectives, etc., construct the NonLinearProgram object that will be optimized.
- Parameters:
arg0 (bool) – Whether to print problem statistics such as the number of variables, constraints, and phases.
arg1 (bool) – Whether to print information about the objective and constraint functions, such as the name and size.
- Return type:
void
- class asset.OptimalControl.PhaseInterface¶
Bases:
OptimizationProblemBase
Base Class for All Optimal Control Phases
- property AbsSwitchTol¶
- property AdaptiveMesh¶
- property AutoScaling¶
- property DetectControlSwitches¶
- property ForceOneMeshIter¶
- property MaxMeshIters¶
- property MeshAbortFlag¶
- property MeshConverged¶
- property MeshErrFactor¶
- property MeshErrorCriteria¶
- property MeshErrorEstimator¶
- property MeshIncFactor¶
- property MeshRedFactor¶
- property MeshTol¶
- property NewError¶
- property NumExtraSegs¶
- property PrintMeshInfo¶
- property RelSwitchTol¶
- property SolveOnlyFirst¶
- property SyncObjectiveScales¶
- __init__(*args, **kwargs)¶
- __module__ = 'asset.OptimalControl'¶
- addBoundaryValue(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, Index: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], Value: float | numpy.ndarray[numpy.float64[m, 1]], AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addDeltaTimeEqualCon(self: asset.OptimalControl.PhaseInterface, value: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addDeltaTimeObjective(self: asset.OptimalControl.PhaseInterface, Var: float, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addDeltaVarEqualCon(self: asset.OptimalControl.PhaseInterface, var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], value: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addDeltaVarObjective(self: asset.OptimalControl.PhaseInterface, Var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], scale: float, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addEqualCon(*args, **kwargs)¶
Overloaded function.
addEqualCon(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.VectorFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addEqualCon(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.VectorFunction, InputIndex: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addEqualCon(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.StateConstraint) -> int
Adds an equality constraint to the transcription
- Parameters:
arg0 – Set equality constraint with ASSET StateConstraint object
- Returns:
Index of the added equality constraint in the transcription
- addInequalCon(*args, **kwargs)¶
Overloaded function.
addInequalCon(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.VectorFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addInequalCon(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.VectorFunction, InputIndex: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addInequalCon(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.StateConstraint) -> int
Adds an inequality constraint to the transcription
- Parameters:
arg0 – ASSET StateConstraint object representing the ineqality constraint
- Returns:
Index of inequality constraint in the transcription
- addIntegralObjective(*args, **kwargs)¶
Overloaded function.
addIntegralObjective(self: asset.OptimalControl.PhaseInterface, Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addIntegralObjective(self: asset.OptimalControl.PhaseInterface, Func: asset.VectorFunctions.ScalarFunction, InputIndex: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addIntegralObjective(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.StateObjective) -> int
Adds an objective that evaluates the integral of the given function over the phase
- Parameters:
arg0 – ASSET StateObjective object
- Returns:
Index of the integral objective
- addIntegralParamFunction(*args, **kwargs)¶
Overloaded function.
addIntegralParamFunction(self: asset.OptimalControl.PhaseInterface, Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], IntParam: int, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addIntegralParamFunction(self: asset.OptimalControl.PhaseInterface, Func: asset.VectorFunctions.ScalarFunction, InputIndex: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], IntParam: int, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addIntegralParamFunction(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.StateObjective, arg1: int) -> int
Adds an integral parameter constraint such that the static parameter with index ‘pv’ is equal to the integral of the given function
- Parameters:
arg0 – ASSET StateObjective object (not neccessarily an objective, but must be Scalar)
arg1 – Index of the parameter of interest
- Returns:
Index of the integral parameter constraint
- addLUFuncBound(*args, **kwargs)¶
Overloaded function.
addLUFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], lowerbound: float, upperbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLUFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], lowerbound: float, upperbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
- addLUNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLUSquaredNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLUVarBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLUVarBounds(*args, **kwargs)¶
Overloaded function.
addLUVarBounds(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.PhaseRegionFlags, arg1: numpy.ndarray[numpy.int32[m, 1]], arg2: float, arg3: float, arg4: float) -> numpy.ndarray[numpy.int32[m, 1]]
Adds a lower and upper bound constraint to several variables within the transcription with a scaling term
- Parameters:
arg0 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg1 – Vector of Indices of the variable to apply the bounds to (vector of int)
arg2 – Value of constraint lower bound for all variables(double)
arg3 – Value of constraint upper bound for all variables (double)
arg4 – Scale value for constraint (usually 1.0)
- Returns:
Vector of Indices of the upper and lower bound constraints in the transcription (vector of int)
addLUVarBounds(self: asset.OptimalControl.PhaseInterface, arg0: str, arg1: numpy.ndarray[numpy.int32[m, 1]], arg2: float, arg3: float, arg4: float) -> numpy.ndarray[numpy.int32[m, 1]]
Adds a lower and upper bound constraint to several variables within the transcription with a scaling term
- Parameters:
arg0 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg1 – Vector of Indices of the variable to apply the bounds to (vector of int)
arg2 – Value of constraint lower bound for all variables(double)
arg3 – Value of constraint upper bound for all variables (double)
arg4 – Scale value for constraint (usually 1.0)
- Returns:
Vector of Indices of the upper and lower bound constraints in the transcription (vector of int)
- addLowerDeltaTimeBound(self: asset.OptimalControl.PhaseInterface, lowerbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLowerDeltaVarBound(self: asset.OptimalControl.PhaseInterface, Var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLowerFuncBound(*args, **kwargs)¶
Overloaded function.
addLowerFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], lowerbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addLowerFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], lowerbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
- addLowerNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLowerSquaredNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addLowerVarBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], lowerbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addPeriodicityCon(self: asset.OptimalControl.PhaseInterface, vars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addStateObjective(*args, **kwargs)¶
Overloaded function.
addStateObjective(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addStateObjective(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, InputIndex: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addStateObjective(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.StateObjective) -> int
Adds an objective function computable at the state/states indicated
- Parameters:
arg0 – ASSET StateObjective type indicating the desired states and objective function
- Returns:
Index of the state objective constraint
- addStaticParamVgroup(*args, **kwargs)¶
Overloaded function.
addStaticParamVgroup(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.int32[m, 1]], arg1: str) -> None
addStaticParamVgroup(self: asset.OptimalControl.PhaseInterface, arg0: int, arg1: str) -> None
- addStaticParamVgroups(self: asset.OptimalControl.PhaseInterface, arg0: dict[str, numpy.ndarray[numpy.int32[m, 1]]]) None ¶
- addStaticParams(*args, **kwargs)¶
Overloaded function.
addStaticParams(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> None
addStaticParams(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> None
- addUpperDeltaTimeBound(self: asset.OptimalControl.PhaseInterface, upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addUpperDeltaVarBound(self: asset.OptimalControl.PhaseInterface, Var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addUpperFuncBound(*args, **kwargs)¶
Overloaded function.
addUpperFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], OPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], SPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], upperbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
addUpperFuncBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: Union[asset.OptimalControl.PhaseRegionFlags, str], Func: asset.VectorFunctions.ScalarFunction, XtUPVars: Union[int, numpy.ndarray[numpy.int32[m, 1]], str, list[str]], upperbound: float, scale: float = 1.0, AutoScale: Union[float, numpy.ndarray[numpy.float64[m, 1]], str, None] = ‘auto’) -> int
- addUpperNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addUpperSquaredNormBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, XtUPVars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addUpperVarBound(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], upperbound: float, scale: float = 1.0, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addValueLock(self: asset.OptimalControl.PhaseInterface, reg: asset.OptimalControl.PhaseRegionFlags | str, vars: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- addValueObjective(self: asset.OptimalControl.PhaseInterface, PhaseRegion: asset.OptimalControl.PhaseRegionFlags | str, Var: int | numpy.ndarray[numpy.int32[m, 1]] | str | list[str], scale: float, AutoScale: float | numpy.ndarray[numpy.float64[m, 1]] | str | None = 'auto') int ¶
- calc_global_error(self: asset.OptimalControl.PhaseInterface) numpy.ndarray[numpy.float64[m, 1]] ¶
- enable_vectorization(self: asset.OptimalControl.PhaseInterface, arg0: bool) None ¶
- getMeshInfo(self: asset.OptimalControl.PhaseInterface, arg0: bool, arg1: int) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- getMeshIters(self: asset.OptimalControl.PhaseInterface) list[asset.OptimalControl.MeshIterateInfo] ¶
- refineTrajAuto(self: asset.OptimalControl.PhaseInterface) None ¶
- refineTrajEqual(self: asset.OptimalControl.PhaseInterface, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Refine the trajectory to obtain equal error between each segment of the trajectory
- Parameters:
arg0 – Number of segments to refine the trajectory (int)
- Returns:
Refined trajectory (vector of states)
- refineTrajManual(*args, **kwargs)¶
Overloaded function.
refineTrajManual(self: asset.OptimalControl.PhaseInterface, arg0: int) -> None
Manually refine the trajectory by modifying the number of defects per bin
- Parameters:
arg0 – New number of defects per bin (int)
- Returns:
void
refineTrajManual(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.int32[m, 1]]) -> None
Manually refine the trajectory by modifying the bin spacing and number of defects per bin
- Parameters:
arg0 – Vector of new bin spacing (vector of double)
arg1 – Vector of new defects per bin (vector of int)
- Returns:
void
- removeEqualCon(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
Removes an equality constraint from the transcription
- Parameters:
arg0 – Transcription index of the equality constraint to remove
- Returns:
void
- removeInequalCon(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
Removes an inequality constraint from the transcription
- Parameters:
arg0 – Transcription index of the inequality constraint to remove
- Returns:
void
- removeIntegralObjective(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
Removes an integral objective from the transcription
- Parameters:
arg0 – Transcription index of the integral objective to remove
- Returns:
void
- removeIntegralParamFunction(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
Removes an integral parameter function from the transcription
- Parameters:
arg0 – Transcription index of the integral parameter function to remove
- Returns:
void
- removeStateObjective(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
Removes a state objective from the transcription
- Parameters:
arg0 – Transcription index of the state objective to remove
- Returns:
void
- returnCostateTraj(self: asset.OptimalControl.PhaseInterface) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns an approximation of the costates of the trajectory (must be done after at least one solve or optimize call)
- Returns:
Vector of costates and times (size xvars + 1)
- returnEqualConLmults(self: asset.OptimalControl.PhaseInterface, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns equality constraint lambda multipliers (must be done after at least one solve or optimize call)
- Parameters:
arg0 – Index of equality constraint to obtain lambda multipliers
- Returns:
Vector of lamda multipliers for trajectory equality constraints
- returnEqualConScales(self: asset.OptimalControl.PhaseInterface, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnEqualConVals(self: asset.OptimalControl.PhaseInterface, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnInequalConLmults(self: asset.OptimalControl.PhaseInterface, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns inequality constraint lambda multipliers (must be done after at least one solve or optimize call)
- Parameters:
arg0 – Index of inequality constraint to obtain lambda multipliers
- Returns:
Vector of lamda multipliers for trajectory inequality constraints
- returnInequalConScales(self: asset.OptimalControl.PhaseInterface, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnInequalConVals(self: asset.OptimalControl.PhaseInterface, arg0: int) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnIntegralObjectiveScales(self: asset.OptimalControl.PhaseInterface, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnIntegralParamFunctionScales(self: asset.OptimalControl.PhaseInterface, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnODEOutputScales(self: asset.OptimalControl.PhaseInterface) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnStateObjectiveScales(self: asset.OptimalControl.PhaseInterface, arg0: int) numpy.ndarray[numpy.float64[m, 1]] ¶
- returnStaticParams(self: asset.OptimalControl.PhaseInterface) numpy.ndarray[numpy.float64[m, 1]] ¶
Returns the current active static parameters of the trajectory
- Returns:
Vector of static parameters (vector of double)
- returnTraj(self: asset.OptimalControl.PhaseInterface) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns the active trajectory of the transcription
returns: Vector containing states of active trajectory (vector of states)
- returnTrajError(self: asset.OptimalControl.PhaseInterface) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnTrajRange(self: asset.OptimalControl.PhaseInterface, arg0: int, arg1: float, arg2: float) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns active trajectory states between two times:param arg0: Number of defects to return (int) (The number of states returned is arg0*(number of states per defect)
- Parameters:
arg1 – Starting dimensional time to get states (double)
arg2 – Final dimensional time to return states (double)
- Returns:
Vector of states between times t0->tf (vector of states)
- returnTrajRangeND(self: asset.OptimalControl.PhaseInterface, arg0: int, arg1: float, arg2: float) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
Returns active trajectory states between two nondimensional times
- Parameters:
arg0 – Number of defects to return (int) (The number of states returned is arg0*(number of states per defect)
arg1 – Starting nondimensional time to get states (double)
arg2 – Final nondimensional time to return states (double)
- Returns:
Vector of states between nondimensional times t0->tf (vector of states)
- returnTrajTable(self: asset.OptimalControl.PhaseInterface) ASSET::LGLInterpTable ¶
- returnUSplineConLmults(self: asset.OptimalControl.PhaseInterface) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- returnUSplineConVals(self: asset.OptimalControl.PhaseInterface) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
- setAdaptiveMesh(self: asset.OptimalControl.PhaseInterface, AdaptiveMesh: bool = True) None ¶
- setAutoScaling(self: asset.OptimalControl.PhaseInterface, AutoScaling: bool = True) None ¶
- setControlMode(*args, **kwargs)¶
Overloaded function.
setControlMode(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.ControlModes) -> None
Set the control mode of the transcription
- Parameters:
arg0 – Desired control mode (Enumerator options = HighestOrderSpline, FirstOrderSpline, NoSpline, BlockConstant)
- Returns:
void
setControlMode(self: asset.OptimalControl.PhaseInterface, arg0: str) -> None
Set the control mode of the transcription
- Parameters:
arg0 – Desired control mode (Enumerator options = HighestOrderSpline, FirstOrderSpline, NoSpline, BlockConstant)
- Returns:
void
- setIntegralMode(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.IntegralModes) None ¶
Set the integral mode of the transcription
- Parameters:
arg0 – Desired integral mode (Enumerator options = BaseIntegral, SimpsonIntegral, TrapIntegral)
- Returns:
void
- setMaxMeshIters(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
- setMaxSegments(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
- setMeshErrFactor(self: asset.OptimalControl.PhaseInterface, arg0: float) None ¶
- setMeshErrorCriteria(self: asset.OptimalControl.PhaseInterface, arg0: str) None ¶
- setMeshErrorEstimator(self: asset.OptimalControl.PhaseInterface, arg0: str) None ¶
- setMeshIncFactor(self: asset.OptimalControl.PhaseInterface, arg0: float) None ¶
- setMeshRedFactor(self: asset.OptimalControl.PhaseInterface, arg0: float) None ¶
- setMeshTol(self: asset.OptimalControl.PhaseInterface, arg0: float) None ¶
- setMinSegments(self: asset.OptimalControl.PhaseInterface, arg0: int) None ¶
- setStaticParamVgroups(self: asset.OptimalControl.PhaseInterface, arg0: dict[str, numpy.ndarray[numpy.int32[m, 1]]]) None ¶
- setStaticParams(*args, **kwargs)¶
Overloaded function.
setStaticParams(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> None
Set the statc paramaters of the transcription
- Parameters:
arg0 – Vector of paramaters to set (vector of doubles)
- Returns:
void
setStaticParams(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> None
Set the statc paramaters of the transcription
- Parameters:
arg0 – Vector of paramaters to set (vector of doubles)
- Returns:
void
- setTraj(*args, **kwargs)¶
Overloaded function.
setTraj(self: asset.OptimalControl.PhaseInterface, arg0: list[numpy.ndarray[numpy.float64[m, 1]]], arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.int32[m, 1]]) -> None
Set a trajectory from an existing mesh with fixed spacings and defect numbers
- Parameters:
arg0 – Full trajectory mesh to use as vector
arg1 – Vector of spacings between bins (0 to 1) (vector of doubles)
arg2 – Vector of size (arg1 - 1) defining number of defects per bin (vector of ints)
- Returns:
void
setTraj(self: asset.OptimalControl.PhaseInterface, arg0: list[numpy.ndarray[numpy.float64[m, 1]]], arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: bool) -> None
setTraj(self: asset.OptimalControl.PhaseInterface, arg0: list[numpy.ndarray[numpy.float64[m, 1]]], arg1: int) -> None
Set a trajectory from an existing mesh
- Parameters:
arg0 – Full trajectory mesh to use as vector
arg1 – Vector defining number of defects per bin
- Returns:
void
setTraj(self: asset.OptimalControl.PhaseInterface, arg0: list[numpy.ndarray[numpy.float64[m, 1]]], arg1: int, arg2: bool) -> None
setTraj(self: asset.OptimalControl.PhaseInterface, arg0: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
- setUnits(*args, **kwargs)¶
Overloaded function.
setUnits(self: asset.OptimalControl.PhaseInterface, **kwargs) -> None
setUnits(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> None
- subStaticParams(self: asset.OptimalControl.PhaseInterface, arg0: numpy.ndarray[numpy.float64[m, 1]]) None ¶
Change the existing static paramaters to a new input
- Parameters:
arg0 – Vector of paramaters to set (vector of doubles)
- Returns:
void
- subVariable(*args, **kwargs)¶
Overloaded function.
subVariable(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.PhaseRegionFlags, arg1: int, arg2: float) -> None
Switch one (1) existing variables of the transcription to a new input
- Parameters:
arg0 – Index of variable to replace
arg1 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg2 – Value of new variable
- Returns:
void
subVariable(self: asset.OptimalControl.PhaseInterface, arg0: str, arg1: int, arg2: float) -> None
Switch one (1) existing variables of the transcription to a new input
- Parameters:
arg0 – Index of variable to replace
arg1 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg2 – Value of new variable
- Returns:
void
- subVariables(*args, **kwargs)¶
Overloaded function.
subVariables(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.PhaseRegionFlags, arg1: numpy.ndarray[numpy.int32[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) -> None
Switch the existing variables of the transcription to a new input
- Parameters:
arg0 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg1 – Vector of indices in the problem to change (vector of int)
arg2 – Vector of values to corresponding variable indices (vector of double)
- Returns:
void
subVariables(self: asset.OptimalControl.PhaseInterface, arg0: str, arg1: numpy.ndarray[numpy.int32[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]]) -> None
Switch the existing variables of the transcription to a new input
- Parameters:
arg0 – The PhaseRegionFlag (Enumerator options = Front, Back, Path, ODEParams, StaticParams)
arg1 – Vector of indices in the problem to change (vector of int)
arg2 – Vector of values to corresponding variable indices (vector of double)
- Returns:
void
- switchTranscriptionMode(*args, **kwargs)¶
Overloaded function.
switchTranscriptionMode(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.TranscriptionModes, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.int32[m, 1]]) -> None
Change the current transcription mode with fixed spacings and defect numbers
- Parameters:
arg0 – Transcription mode to change to (Enumerator)(LGL3, LGL5, LGL7, Trapezoidal, CentralShooting)
arg1 – Vector of spacings between bins (0 to 1) (vector of doubles)
arg2 – Vector of size (arg1 - 1) defining number of defects per bin (vector of ints)
- Returns:
void
switchTranscriptionMode(self: asset.OptimalControl.PhaseInterface, arg0: asset.OptimalControl.TranscriptionModes) -> None
Change the current transcription mode
- Parameters:
arg0 – Transcription mode to change to (Enumerator options = LGL3, LGL5, LGL7, Trapezoidal, CentralShooting)
- Returns:
void
switchTranscriptionMode(self: asset.OptimalControl.PhaseInterface, arg0: str, arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.int32[m, 1]]) -> None
Change the current transcription mode with fixed spacings and defect numbers
- Parameters:
arg0 – Transcription mode to change to (Enumerator)(LGL3, LGL5, LGL7, Trapezoidal, CentralShooting)
arg1 – Vector of spacings between bins (0 to 1) (vector of doubles)
arg2 – Vector of size (arg1 - 1) defining number of defects per bin (vector of ints)
- Returns:
void
switchTranscriptionMode(self: asset.OptimalControl.PhaseInterface, arg0: str) -> None
Change the current transcription mode
- Parameters:
arg0 – Transcription mode to change to (Enumerator options = LGL3, LGL5, LGL7, Trapezoidal, CentralShooting)
- Returns:
void
- test_threads(self: asset.OptimalControl.PhaseInterface, arg0: int, arg1: int, arg2: int) None ¶
- transcribe(self: asset.OptimalControl.PhaseInterface, arg0: bool, arg1: bool) None ¶
Force transcription. Note: this is done internally when any problem definitions are changed and usually shouldn’t be called
- Parameters:
arg0 – Displays number of variables in phase (bool)
arg1 – Displays all functions attached to problem, along with vindices and cindeces (bool)
- Returns:
void
- class asset.OptimalControl.PhaseRegionFlags¶
Bases:
pybind11_object
Members:
Front
Back
Path
NodalPath
FrontandBack
BackandFront
Params
InnerPath
ODEParams
StaticParams
PairWisePath
- Back = <PhaseRegionFlags.Back: 2>¶
- BackandFront = <PhaseRegionFlags.BackandFront: 4>¶
- Front = <PhaseRegionFlags.Front: 1>¶
- FrontandBack = <PhaseRegionFlags.FrontandBack: 3>¶
- InnerPath = <PhaseRegionFlags.InnerPath: 6>¶
- NodalPath = <PhaseRegionFlags.NodalPath: 7>¶
- ODEParams = <PhaseRegionFlags.ODEParams: 13>¶
- PairWisePath = <PhaseRegionFlags.PairWisePath: 9>¶
- Params = <PhaseRegionFlags.Params: 12>¶
- Path = <PhaseRegionFlags.Path: 5>¶
- StaticParams = <PhaseRegionFlags.StaticParams: 14>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.PhaseRegionFlags) int ¶
- __init__(self: asset.OptimalControl.PhaseRegionFlags, value: int) None ¶
- __int__(self: asset.OptimalControl.PhaseRegionFlags) int ¶
- __members__ = {'Back': <PhaseRegionFlags.Back: 2>, 'BackandFront': <PhaseRegionFlags.BackandFront: 4>, 'Front': <PhaseRegionFlags.Front: 1>, 'FrontandBack': <PhaseRegionFlags.FrontandBack: 3>, 'InnerPath': <PhaseRegionFlags.InnerPath: 6>, 'NodalPath': <PhaseRegionFlags.NodalPath: 7>, 'ODEParams': <PhaseRegionFlags.ODEParams: 13>, 'PairWisePath': <PhaseRegionFlags.PairWisePath: 9>, 'Params': <PhaseRegionFlags.Params: 12>, 'Path': <PhaseRegionFlags.Path: 5>, 'StaticParams': <PhaseRegionFlags.StaticParams: 14>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.PhaseRegionFlags, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- class asset.OptimalControl.RKOptions¶
Bases:
pybind11_object
Members:
RK4
DOPRI54
DOPRI87
- DOPRI54 = <RKOptions.DOPRI54: 2>¶
- DOPRI87 = <RKOptions.DOPRI87: 3>¶
- RK4 = <RKOptions.RK4: 0>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.RKOptions) int ¶
- __init__(self: asset.OptimalControl.RKOptions, value: int) None ¶
- __int__(self: asset.OptimalControl.RKOptions) int ¶
- __members__ = {'DOPRI54': <RKOptions.DOPRI54: 2>, 'DOPRI87': <RKOptions.DOPRI87: 3>, 'RK4': <RKOptions.RK4: 0>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.RKOptions, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- class asset.OptimalControl.StateConstraint¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.StateConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.StateConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: asset.OptimalControl.PhaseRegionFlags, arg4: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.StateConstraint, arg0: asset.VectorFunctions.VectorFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]]) -> None
- __module__ = 'asset.OptimalControl'¶
- class asset.OptimalControl.StateObjective¶
Bases:
pybind11_object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: asset.OptimalControl.StateObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: numpy.ndarray[numpy.int32[m, 1]], arg4: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.StateObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]], arg3: asset.OptimalControl.PhaseRegionFlags, arg4: numpy.ndarray[numpy.int32[m, 1]]) -> None
__init__(self: asset.OptimalControl.StateObjective, arg0: asset.VectorFunctions.ScalarFunction, arg1: asset.OptimalControl.PhaseRegionFlags, arg2: numpy.ndarray[numpy.int32[m, 1]]) -> None
- __module__ = 'asset.OptimalControl'¶
- class asset.OptimalControl.TranscriptionModes¶
Bases:
pybind11_object
Members:
LGL3
LGL5
LGL7
Trapezoidal
CentralShooting
- CentralShooting = <TranscriptionModes.CentralShooting: 4>¶
- LGL3 = <TranscriptionModes.LGL3: 0>¶
- LGL5 = <TranscriptionModes.LGL5: 1>¶
- LGL7 = <TranscriptionModes.LGL7: 2>¶
- Trapezoidal = <TranscriptionModes.Trapezoidal: 3>¶
- __eq__(self: object, other: object) bool ¶
- __getstate__(self: object) int ¶
- __hash__(self: object) int ¶
- __index__(self: asset.OptimalControl.TranscriptionModes) int ¶
- __init__(self: asset.OptimalControl.TranscriptionModes, value: int) None ¶
- __int__(self: asset.OptimalControl.TranscriptionModes) int ¶
- __members__ = {'CentralShooting': <TranscriptionModes.CentralShooting: 4>, 'LGL3': <TranscriptionModes.LGL3: 0>, 'LGL5': <TranscriptionModes.LGL5: 1>, 'LGL7': <TranscriptionModes.LGL7: 2>, 'Trapezoidal': <TranscriptionModes.Trapezoidal: 3>}¶
- __module__ = 'asset.OptimalControl'¶
- __ne__(self: object, other: object) bool ¶
- __repr__(self: object) str ¶
- __setstate__(self: asset.OptimalControl.TranscriptionModes, state: int) None ¶
- __str__(self: object) str ¶
- property name¶
- property value¶
- asset.OptimalControl.strto_PhaseRegionFlag(arg0: str) asset.OptimalControl.PhaseRegionFlags ¶